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ABSTRACT

Temporal difference (TD) methods provide a powerful means of learning to

make predictions in an online, model-free, and highly scalable manner. In

the reinforcement learning (RL) framework, we formalize these prediction

targets in terms of a (possibly discounted) sum of rewards, called the return.

Historically, RL methods have mainly focused on learning to estimate the

expected return, or the value, but there has been some indication that using

TD methods to make more general predictions would be desirable. In this

thesis, we describe an approach to making such predictions, with emphasis

on estimating the variance of the return.

Equipped with an estimate of the variance, a learning agent can gauge not

just the mean outcome in a given situation, but also the degree to which

an individual return will tend to deviate from the average. Such knowledge

could be applied towards expressing more sophisticated predictions, decision

making under uncertainty, or hyperparameter optimization, among other

things.

Previous work has shown that it is possible to construct an approximate

Bellman equation for higher moments of the return using estimates of the

preceding moments, which can then be used in a TD-style algorithm to learn

those moments. This approach builds on the raw moments of the return,

which tend to make for poor approximation targets due to the outsize effect

that noise and other sources of error have on them. In contrast, the central

moments generally make for more robust approximation targets. Learning
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to estimate the return’s second central moment, i.e. the variance, would be

useful on its own and as a prelude to future algorithms.

However, defining a suitable prediction target for the return’s variance is

not straightforward. The expected return is easily expressed as a Bellman

equation; variance, as a nonlinear function of the return, is hard to formulate

in similar terms. Establishing convergence for nonlinear algorithms is more

difficult as well.

Our main contributions concern an algorithm that attempts to navigate

these issues: Direct Variance Temporal Difference Learning (DVTD). It con-

sists of two components: the first learns the value function, while the second

learns to predict the discounted sum of squared TD errors emitted by the

value learner. This 𝛿2-return is equivalent to the variance of the original

return when the value function is unbiased. We provide an analysis demon-

strating this equivalence, which also illuminates the relationship between the

𝛿2-return and alternative various moment-based targets.

For the more typical case where the true value function is unavailable, we

provide an interpretation for what DVTD is estimating, and show that it

converges to a unique fixed-point under linear function approximation. We

also describe how adjusting hyperparameters can yield new approximation

targets, allowing us to estimate the variance of the λ-return. Finally, we

report on some experiments indicating DVTD’s superior performance relative

to alternative methods, which also serve to validate our claims regarding

DVTD’s stability and practical usability.
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Gesse at this woorke as happe doth leade.
By chance to truthe you may procede.
And firste woorke by the question,
Although no truthe therein be don.

Suche falsehode is so good a grounde,
That truth by it will soone be founde.

— Robert Recorde, c. 1542
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GLOSSARY

action A response an agent could execute in response to a given state which
affects the environment.

action space, set of actions The set of all possible actions that could be
executed in an environment, denoted 𝒜.

agent, learning agent An entity (e.g., a computer program) that interacts
with an environment in a learning task.

approximation target The quantity a learning algorithm estimates. For
example, a least squares estimator (𝐰 = argmin𝐰 ‖𝐗𝐰 − 𝐲‖2

2) targets
𝐲, while the approximation target for TD(𝜆) is the 𝜆-return.

Bellman equation A recursive equation that expresses the value of the
current state in terms of the reward from the next transition and
the (discounted) value of the subsequent state. For example, 𝑣(𝑠) =
E[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1)|𝑆𝑡 = 𝑠] is a Bellman equation; however usually such
equations are with reference to a particular policy (particularly the
optimal policy).

Bellman operator An operator that transforms value functions. In this
thesis we concern ourselves mainly with the Bellman policy operator,
expressed as 𝒯𝜋𝐯 ≝ 𝐫𝜋 + 𝐏𝜋𝚪𝐯, where 𝜋 is some policy. Applying 𝒯𝜋

to 𝐯 yields a new value function, comprised of the expected reward and
the discounted value of the next state (according to 𝐯), given that we
select actions according to 𝜋. The Bellman operator is a contraction;
which is to say if we update our value function like 𝐯𝑡+1 = 𝒯𝜋𝐯𝑡, then
lim𝑡→∞ 𝐯𝑡 = 𝐯𝜋, which is the fixed-point of 𝒯𝜋 and (not coincidentally)
also the value function for policy 𝜋.

bootstrapping factor A tunable parameter, usually denoted 𝜆, that con-
trols the degree by which an algorithm bootstraps from its current
value function instead of the full return. For TD(λ), this is implemen-
ted as the decay rate for the eligibility trace. It can be state-dependent,
in which case we write 𝜆(𝑠) for the value of 𝜆 in state 𝑠 ∈ 𝒮.

central moment A measure of how much of a random variable’s probability
mass is concentrated over values distant from the mean. If 𝜇 is the
mean of a random variable, then the n-th central moment is defined
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as:

𝑐𝑛 = {∫𝒳 𝑝(𝑥)(𝑥 − 𝜇)𝑛d𝑥 continuous case
∑𝑥∈𝒳 𝑝(𝑥)(𝑥 − 𝜇)𝑛 discrete case

For example, the second central moment (also known as the variance)
of a random variable 𝑋 is written 𝑐2(𝑋).

continuing setting A problem where the environment doesn’t have ter-
minal states and trajectories can continue for arbitrary lengths of time.

contraction, operator contraction For a function, mapping, or operator
(say 𝑓 ∶ 𝒳 → 𝒳 for some normed vector space 𝒳) to be a contraction
(alternatively: contracting, contractive) means that in some norm, ‖⋅‖,
we have ‖𝑓(𝑥)‖ < ‖𝑥‖ for all 𝑥 ∈ 𝒳. Showing that an operator is a
contraction is useful because then it probably also has a fixed-point.
More general definitions of contractions exist2, e.g., for metric spaces
instead of just normed vector spaces, but this definition suffices for our
purposes.

convergent A sequence that tends to grow closer to a particular point is
said to be “convergent”. There are many different kinds of convergence,
but for stochastic approximation schemes we usually mean that given
enough time, its estimates will eventually reach a fixed point regardless
of the initial conditions.

differential equation An equation where the derivative of a function is
defined with reference to the function itself. There are many kinds
of differential equations, although for our purposes we mainly consider
ordinary differential equations.

discount factor A scalar between zero and one that expresses how much
the value of a state should influence the value of its predecessor states,
usually denoted by 𝛾. In a slight departure from the usual MDP formal-
ism, we may consider state- or transition-dependent discounting, where
𝛾𝑡+1 = 𝛾(𝑆𝑡+1) or 𝛾𝑡+1 = 𝛾(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1). Such considerations are an
element of the theory for general value functions.

DVTD, Direct Variance Temporal Difference Learning Direct Variance
Temporal Difference learning, which is a method for estimating the
variance of the return using temporal difference errors (and a major
component of this very thesis).

dynamic programming A collection of techniques for efficiently solving
problems by exploiting the structure of the task, e.g. by separating it
into smaller sub-problems and tackling those individually, or amort-
izing resource use by constructing solutions incrementally. Reinforce-

2Blame the topologists for always poking holes in things
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ment learning has a large amount of overlap with dynamic program-
ming; for example, TD(λ) can be thought of as a dynamic programming
algorithm due to the way it estimates the value function by bootstrap-
ping off existing estimates.

environment Everything external to the agent in a learning task.
episodic setting A task where trajectories can be split into discrete epis-

odes, separated when the environment reaches a terminal state. For
example, the game of chess is an episodic problem, and each separate
game can be thought of as an episode.

fast timescale For a stochastic approximation scheme with components
that update with different stepsizes, the fast timescale corresponds to
the component whose stepsize dominates that of the “slow” component.
From the perspective of the fast component, the slow component is
quasi-stationary; this perspective helps considerably when considering
questions of convergence and stability. See also slow timescale.

filtration A representation of the information available with regards to a
stochastic process at a given time. For example, the history of states
visited in an MDP corresponds to a filtration.

fixed-point The fixed-point (sometimes written fixed point) of a sequence
is the value that the sequence ultimately converges to.

function approximation A problem setting where the value function is
parameterized and therefore only represented approximately.

general value function, GVF An extension to the theory of value func-
tion to encompass more general predictions, for example those that
incorporate state-dependent discounting or bootstrapping. More gen-
eral development of GVFs can be found in Sutton, Modayil et al. 2011;
White 2015; Modayil, White and Sutton 2012; Sherstan 2020, among
others.

Hermitian matrix A (square) matrix that is unchanged under the conjug-
ate transpose, that is, 𝐀 = 𝐀†,. Note that a symmetric real matrix is
trivially Hermitian.

interpolated differential equation A construction used to make discrete
time iterates comparable with continuous time functions, e.g. to facil-
itate comparisons between a stochastic approximation scheme and its
associated limiting ODE.

learning task A task or problem which we pose to a learning agent. In
reinforcement learning, we usually we model the task as an MDP.

Liapunov function, Liapunov method (also romanized as “Lyapunov”)
Liapunov’s method for showing the asymptotic stability of an ODE en-
tails selecting a function that effectively acts as a “potential” (think
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of gravity). For example, suppose 𝑉 (⋅) is a Liapunov function for the
system ̇𝑥(𝑡) = 𝑓(𝑥). Then 𝑉 is positive, except at the equilibrium,
with continuous first derivatives, and furthermore, d

d𝑡𝑉 = ⟨∇𝑉 , ̇𝑥⟩ =
⟨∇𝑉 , 𝑓⟩ is negative definite. The existence of such a function demon-
strates that (at least near the equilibrium point), the system is always
getting closer to the equilibrium; therefore it will converge to the equi-
librium and stay there.

limiting differential equation The differential equation associated with a
stochastic approximation scheme in the limit as the stepsize (and noise)
approach zero.

linear function approximation A problem setting where the value func-
tion is parameterized in such a way that a state’s value can be expressed
as the inner product of the feature vector and the weight vector. For
example, if 𝜙(𝑠𝑡) = 𝜙𝑡 is the feature vector at time 𝑡, and 𝜃 is the
weight vector, then 𝑣(𝑠𝑡) = 𝜃⊤𝜙𝑡.

Markov decision problem, Markov decision process, MDP A Markov
Decision Problem is construction which we use to model various tasks.
See Chapter 2 for more details.

Markov property The defining characteristic of Markov processes; essen-
tially states that the current state contains all relevant information for
predicting the process’ future. A Markov process is “memoryless” in
that the past history does not influence the future evolution.

Markov reward process, MRP A stochastic process with the Markov prop-
erty, i.e. it is memoryless in that knowing the current state is just as
informative as knowing the entire history of previous states. A Markov
reward process is induced from an MDP by selecting actions according
to a fixed policy.

martingale A stochastic process {𝑋𝑡} that where the expected value of the
next observation, conditioned on all past observations, is equal to the
most recent observation. That is, E[𝑋𝑛+1|𝑋1, … , 𝑋𝑛] = 𝑋𝑛.

martingale difference sequence, MDS A sequence {𝑀𝑡} is a martingale
difference sequence if its expectation with respect to the past is zero.
More formally, let {𝑀𝑡} be a martingale difference sequence with re-
spect to the sequence of filtrations {ℱ𝑡}. Then for all 𝑡, we have
E|𝑀𝑡| < ∞ and E[𝑀𝑡+1|ℱ𝑡] = 0. Note that if 𝑋𝑡 is a martingale, then
𝑀𝑡 = 𝑋𝑡 − 𝑋𝑡−1 is a martingale difference sequence (hence the name).

moment of a random variable Ameasure of the probability mass of a ran-
dom variable. More concretely, the n-th moment of a random variable
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with probability distribution function 𝑝(⋅) is defined as

𝜇𝑛 = {∫𝒳 𝑝(𝑥)𝑥𝑛d𝑥 continuous case
∑𝑥∈𝒳 𝑝(𝑥)𝑥𝑛 discrete case

For example, the mean of a random variable 𝑋 is 𝜇1(𝑋), the first
moment.

multiple timescale algorithm A stochastic approximation scheme with mul-
tiple components that update at different rates, particularly those with
multiple stepsizes.

objective function, error function A function used to formalize how “good”
a particular solution is for a given problem. For example, 𝑓(𝑥) =
(𝑥 − 𝑥∗)2 is an objective function (the squared error) that measures
the distance between 𝑥 and 𝑥∗. It is generally helpful if the objective
function is differentiable (or something like it), since that allows us to
improve our solution by gradient descent.

observation A term for the agent’s perception of the environment’s state. In
the tabular case, the observations are equivalent to the state, whereas
under function approximation (or in partially observable MDPs) the
agent may not have access to the “true” state information, so we refer to
the sensory information it receives as observations when a distinction
may be required.

ordinary differential equation (ODE) An equation where the derivative
of a function is defined with reference to the function itself. For ex-
ample, ̈𝑥 = 𝜔2𝑥, the equation for the undamped harmonic oscillator, is
an ODE.

policy A method of selecting actions, usually denoted 𝜋. Can be stochastic,
in which case the probability of selecting 𝑎 ∈ 𝒜 given state 𝑠 ∈ 𝒮 is
usually written 𝜋(𝑎|𝑠).

positive definite matrix A matrix 𝐀 such that 𝐱⊤𝐀𝐱 > 0 for 𝐱 ≠ 0. If we
relax the condition to 𝐱⊤𝐀𝐱 ≥ 0, we say that 𝐀 is positive semi-definite
instead.

raw moment See Moment of a random variable
real matrix A matrix with real-valued entries, e.g. 𝐀 ∈ R𝑚×𝑛.
return The sum of discounted rewards starting from a point in time. Usually

denoted 𝐺𝑡, and defined 𝐺𝑡 = ∑∞
𝑛=0 𝑅𝑡+𝑛+1 ∏𝑛−1

𝑘=1 𝛾𝑡+𝑘, or just 𝐺𝑡 =
∑𝑛=0 𝛾𝑛𝑅𝑡+𝑛+1 for constant discounting.

return error, RE, RE The error of some value function with respect to the
return under a given policy and state distribution. Usually the metric
used is the 𝐿2-norm, yielding the mean squared return error.
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reward A scalar signal emitted by the environment as part of a transition.
reward function A function that returns a reward for a given transition,

potentially with an element of randomness or noise. Formally, ℛ ∶
𝒮 × 𝒜 × 𝒮 × R → [0, 1].

sigma algebra, σ-algebra A sigma algebra or 𝜎-algebra is a collection of
subsets of some set (say 𝑋) that includes 𝑋 and is closed under both
complement and countable unions. They tend to be invoked when
something requires Lebesgue integration, which is rather often in prob-
ability and statistics.

slow timescale For a coupled stochastic approximation scheme with com-
ponents that update with different stepsizes, the slow timescale is the
one whose stepsize is dominated by the stepsize of the “fast” compon-
ent. If we identify the sum of the stepsizes with the time elapsed (e.g.
𝑡𝑛 = ∑𝑘=0 𝛼𝑘) then the fast component, with larger stepsizes relat-
ive to the slow component, effectively has progressed further in time
compared to the slow component (for the same number of iterations).

stable, stability The tendency of a system to be robust to small perturba-
tions. For a stochastic approximation scheme, we say that it is stable
if there is no risk that it will diverge (go to infinity) under reasonable
conditions.

state A configuration of the environment.
state space, set of states The set of all possible configurations of an envir-

onment, denoted 𝒮.
stepsize A parameter that determines the magnitude of the updates made

to the value function. Large stepsizes may engender quicker learning, at
the expense of greater instability and with the possibility of “forgetting”
past experience.

symmetric matrix A (square) matrix such that 𝐀 = 𝐀⊤.
tabular case A problem setting where the observations available to the

agent express the full state information. This means that the value
function is essentially a table assigning states to values, thus we de-
scribe such tasks as being “tabular” in nature.

temporal difference error, TD error A measure of the error in the value
function for a single transition. Formally, 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) −
𝑣(𝑆𝑡). It is the difference between the current state’s value and the dis-
counted value of the successor state plus the reward for that transition.

terminal state A state in a Markov process which always transitions to
itself and returns a reward of zero for every transition. Reaching the
terminal state implies that the trajectory is over; in the episodic case
this corresponds to the end of an episode.
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transition A grouping of state, action, subsequent state (and possibly the
reward) for a given time-step. Formally, a tuple (𝑠, 𝑎, 𝑠′) or (𝑠, 𝑎, 𝑟, 𝑠′),
where 𝑠 and 𝑠′ are the current state and successor state, respectively, 𝑎
is the action executed in state 𝑠, and 𝑟 is the reward produced by the
transition.

transition function A function that provides the probability of making a
particular transition. For example, given a state, an action, and a suc-
cessor state, the transition function returns the probability of making
that particular transition. Formally, 𝑃 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1]. To be
well-defined, we require that ∑𝑠′ 𝑃(𝑠, 𝑎, 𝑠′) = 1 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜, that is
the transition probabilities given state 𝑠 and action 𝑎 must sum to one.
Conditioned on a policy, we may instead write 𝐏𝜋 to denote a transition
matrix, whose (i,j)-th entry marks the probability of transitioning to
state 𝑗 given the agent is currently in state 𝑖 and acting according to
policy 𝜋.

update equation An equation that describes how to adjust the value func-
tion (or the weight parameters that determine the value function) in
light of new experience.

value The expected return (for a given state), usually defined to be condi-
tional on following a particular policy. When unqualified, we typically
mean the true expected value, rather than an approximation or estim-
ate of it.

value error, VE, VE The error of some value function with respect to the
true value function for some policy, taken over a given state distribution.
Usually the metric used is the 𝐿2-norm, yielding the mean squared
value error.

VTD, Variance Temporal Difference Learning Variance Temporal Dif-
ference learning, a method for estimating the variance of the return by
first estimating the return’s second moment.

σ-algebra See sigma algebra
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CHAPTER 1

INTRODUCTiON

When making decisions or planning for the future, the single most valuable

piece of information is the expected value, that is, what you would expect to

happen “on average.”

It requires a certain amount of experience to gauge what response to a

given scenario yields the best outcome; choosing an action and executing it

requires a certain amount of effort as well. Part of the allure of machine

learning (ML) is that, at least in some circumstances, this process can be

automated, and computers are well-suited to processing vast quantities of

data and making decisions quickly. With a little creativity, machine learning

can be applied in a surprising number of situations.

Of particular interest are decision problems where the effects of taking

an action is only revealed at some point in the future. Many tasks can be

modelled in this fashion. For example, when playing a game, each move

contributes to victory or defeat, but only on the final move is the outcome

made apparent. More abstractly, even composing a sentence fits this model,

as each word affects the overall meaning of the thought being conveyed.

Of particular interest are decision problems that can be recursively decom-

posed into sub-problems, where the result of taking a particular action does

not depend on the prior history of the system up to that point. These sorts

of tasks which are well-suited to a certain kind of machine learning, called

reinforcement learning (RL).
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The RL framework models systems as consisting of a learning agent in

some environment. At each time step, the agent observes the state of its en-

vironment, executes an action, which results in the environment transitioning

to a new state and emitting a reward. If the agent’s action selection policy

is fixed, our goal might be to learn to predict the (possibly discounted) sum

of rewards it can expect to receive conditioned on its observations; alternat-

ively, it might be looking to improve its policy to maximize the rewards it

will receive. This sum of rewards is called the return, and can be expressed

mathematically as

𝐺𝑡⏟
return

from time “𝑡”

=
∞

∑
𝑛=1

discount factor, 𝛾 ∈ [0, 1]
⏞𝛾𝑛−1 𝑅𝑡+𝑛⏟
transition reward

.

Reinforcement learning is appealing because it is flexible, lending itself

to algorithms that can learn incrementally, continuously, not to mention

efficiently. Insofar as your task can be expressed in terms of the expected

sum of rewards, then a RL algorithm is probably the method of choice for

addressing it. Typically, an RL task is formulated with reference to the

expected return, also called the value.

If you know an action’s expected outcome, the next most important thing

to be aware of is that the average case doesn’t always tell the whole story.

One can think of many tasks that seem to have a natural reward function,

only to find that the “obvious” return does not quite capture the problem’s

essence. For example, in games with binary outcomes, if a given line of play

is ultimately expected to result in a loss, then perhaps a riskier style might

be called for, even if it is expected to lose by a wider margin. Conversely, a

traveller in an autonomous car might prefer a route that takes longer so long

as that route poses no risk of traffic jams which might make them late for

an appointment.

2



This presents a dilemma for RL practitioners, since it can be difficult or

even impossible to express these sorts of considerations in the form of a dis-

counted sum. Rather than abandoning the myriad benefits of RL, we might

instead seek a means of adapting our methods by making more sophisticated

predictions.

The typical solution is usually to modify the task specification in an at-

tempt to have the rewards better represent what we truly wish to predict

or optimize while obeying the constraints of the framework. This can have

adverse effects, in some cases making the task more difficult for an agent to

learn, or in other cases changing the meaning of success to the extent that

the agent learns the wrong thing.

An alternative would be instead learn to estimate functions of the return,

which would allow us to keep thinking in terms of easily measured quantities

(like return on investment, the probability of winning a game, or travel-time

to a destination), while enabling us to address more complicated questions of

utility as well. In this paradigm, we could learn from the natural prediction

target while reserving the ability to adjust it to bring it as necessary.

To give another example, successful gamblers must account for the risk

associated with a bet in addition to the expected profit. If the odds are good

but the outcome is uncertain, it might be better not to play if there’s the

possibility of ending up in debt to unsavory characters. We could of course

modify how we defined the return in order to penalize losses appropriately,

but this reduces the usefulness of the learned predictions. In other circum-

stances, our agent might not be so risk-averse, and so would have to re-learn

its gambling strategy because its past experience is no longer applicable. If,

instead, we had learned to estimate the return’s distribution, we could in-

stead approximate how worthwhile a particular bet would be under various
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different circumstances.

As a test case, this thesis focuses on a method for estimating the return’s

variance, which has historically been ignored in comparison to the expected

return. This may be partially due to the difficulty involved with analyzing

algorithms that target it using existing methods. The variance of a random

variable is its the second central moment, and provides some notion of how

individual realizations of that random variable differ from its mean; it can

be interpreted as a measure of uncertainty or risk.

The algorithm we analyze, called Direct Variance Temporal Difference

Learning (DVTD), is based off the well-studied TD(λ) algorithm, and enjoys

many of that celebrated algorithm’s advantages. DVTD manages this by first

learning an estimate of the expected return, and then uses that estimate to

construct a prediction target which approximates the variance of the return.

While we cannot claim this algorithm to be entirely new1, this thesis does

contain some novel contributions:
∘ We provide a detailed analysis and explication of DVTD, showing how it
relates to previous work and comparing it with alternative methods for
estimating the return’s variance.

∘ We extend DVTD to the general value function setting, show that it can be
used to construct prediction targets for the variance of the λ-return, and
even the variance of returns with different bootstrapping hyperparameters.

∘ We show that DVTD converges under standard conditions, indicating that
it can be used in the same situations where TD(λ) would be used.

∘ Using simulated experiments, we compare DVTD with related methods,
including second moment based and distributional algorithms, showing
that DVTD generally holds the advantage over the alternatives.

∘ We also provide some general background for methods of estimating ar-
bitrary moments of the return, and describe how they might be used to
approximate arbitrary functions of the return.
In Chapter 2, we provide a (relatively) brief summary of reinforcement
1As it was developed in collaboration with others at the University of Alberta’s RLAI

Lab (Sherstan et al. 2018).
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learning. Chapter 3 contains some further background information, with

some more commentary on functions of the return and why learning to ap-

proximate them is a worthwhile endeavor. The remaining chapters contain

the bulk of our contributions. In Chapter 4, we introduce an approximation

target (the 𝛿2-return) and an algorithm (DVTD) for estimating the variance

of the return. We describe experiments we conducted to test DVTD and

compare it with some alternatives in Chapter 5. Finally, we end with a sum-

mary of our contributions and some discussion of potential future work in

Chapter 6. The remaining pages consist of appendices which provide further

details, along some supplemental material such as an algorithm listing and

a glossary.

5



CHAPTER 2

BACKGROUND

In this chapter, we provide an overview of reinforcement learning, particularly

the parts that we will make reference to in later chapters. We outline the

basic framework, discuss temporal difference methods for learning the value

function, as well as summarizing how algorithms can be proved convergent

using results from the theory of differential equations.

2.1 Reinforcement Learning

Machine learning is about developing algorithms that, once trained, produce

an appropriate output for a supplied input. This output usually takes the

form of a prediction or action; in traditional supervised learning, the agent’s

response can be compared to a desired result and used as feedback to improve

the agent. However, in many cases, the outcome of a given choice is not

immediately apparent.

For example, games such as Chess or Go consist of a sequence of many

moves that determine the future state of the board and, ultimately, the

result of the game itself. Intuitively, it is clear that with enough experience

it becomes possible to predict the effects of different actions over various time

horizons, but we require a more precise formalism if we want to mechanize

the process.

Reinforcement learning (RL) is such a framework. An RL problem consists
6



of a learning agent that interacts with an environment according to some

policy. The agent learns to predict how much of a scalar signal, referred to

as the reward or the cumulant, that it will receive over a period of time by

following the policy1. The environment consists of everything external to the

agent, and is the source of the agent’s observations about the world as well

as the reward.

Environment

Agent

Observation,
Reward

Action

Figure 2.1: The basic reinforcement learning model. The agent observes the envir-
onment, executes an action, causing the environment to emit a reward and provide a
new observation.

In a game of chess, the agent would be the player, and the environment

would be the opponent, the board, the legion of cheering spectators, etc. The

position of the pieces correspond to the state, informs the actions taken by

the agent; in this example, the actions consist of the moves available to the

agent on its turn. The reward would be the outcome of the game, say one

point for a win, zero points for a loss, and half a point for a draw, and only

emitted after the final move. While the result of the game is not certain until

the end of the game, as moves are made it becomes possible to predict the

outcome with greater accuracy.
1Strictly speaking, not all reinforcement learning algorithms make explicit predic-

tions about the value function. For example, policy gradient methods such as REIN-
FORCE(Williams 1992) alter the policy with the goal of maximizing the expected return
without actually computing a value for the expected return. In many cases, however, incor-
porating an estimate of the expected return can improve the performance of these algorithms.
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Prediction may either be an end in itself or used as a step towards changing

the policy with the goal of maximizing long-term reward. In the control

case, the agent continually adjusts its policy while simultaneously refining

its predictions, looking to maximize the reward it will accumulate. For the

prediction setting, the policy is held constant and the agent concerns itself

only with learning to predict the results of its actions.

2.2 Formalizing RL using MDPs

We make the ideas introduced in the previous section more concrete by cast-

ing them in terms of Markov Decision Process (MDPs).

A Markov Decision Process is a 5-tuple of the form ℳ = (𝒮, 𝒜, 𝑃 , 𝑟, 𝛾),
where:

∘ 𝒮 represents the “state space”, and is a set containing all possible con-
figurations of the environment.

∘ 𝒜, the “action space”, is a set containing all actions available to the
agent.

∘ 𝑃 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1] is the transition probability. We write 𝑃(𝑠, 𝑎, 𝑠′)
to denote the probability of transitioning to state 𝑠′ given that action
𝑎 was taken in state 𝑠.

∘ ℛ ∶ 𝒮 × 𝒜 × 𝒮 → R is the expected reward function, which gives the
average reward associated with a particular transition. In the theory of
general value functions, the reward is also referred to as the cumulant.

∘ 𝛾, which represents discounting, and may be either a constant (𝛾 ∈
[0, 1]) or more generally a function of the transition2, e.g. 𝛾 ∶ 𝒮 → [0, 1].

For ease of analysis we focus on discrete-time MDPs and assume 𝒮 and 𝒜
are both finite sets.

At each time 𝑡 = 0, 1, 2, … the environment’s state is 𝑆𝑡, the agent executes
2Non-constant discounting has some technical advantages at the cost of slightly complic-

ating the notation. For simplicity, we consider state-dependent discounting, meaning that
𝛾𝑡+1 = 𝛾(𝑆𝑡+1), although transition dependent discounting (with 𝛾𝑡+1 = 𝛾(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1)) be-
haves similarly). Further details can be found in Sutton, Modayil et al. (2011), Maei (2011),
White (2015) and Mahmood (2017), among others.
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an action 𝐴𝑡 ∈ 𝒜, and the environment responds by emitting a reward 𝑅𝑡+1

and transitioning to a state 𝑆𝑡+1. The agent selects actions according to

some policy (usually denoted 𝜋) that assigns a probability to selecting an

action conditioned on being in a particular state. This might be denoted

𝐴𝑡 ∼ 𝜋(𝑆𝑡); by convention, we write 𝜋(𝑎|𝑠) to refer to the probability of

selecting action 𝑎 given state 𝑠.

To formalize the notion of long-term cumulative reward, we introduce the

return, which is the discounted sum of future rewards:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝛾𝑛𝑅𝑡+𝑛+1 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ , (2.1)

or, if 𝛾 is not constant:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝑅𝑡+𝑛+1
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘 = 𝑅𝑡+1 + 𝛾𝑡+1𝑅𝑡+2 + 𝛾𝑡+1𝛾𝑡+2𝑅𝑡+3 + ⋯ . (2.2)

It is sometimes more convenient to express the return recursively, as 𝐺𝑡 =
𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1.

The value of a state, written 𝑣𝜋(𝑠), is then the expected return, conditional
on starting from state 𝑠 and thereafter selecting actions according to policy

𝜋:

𝑣𝜋(𝑠) ≝ E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E[∑

𝑛=0
𝑅𝑡+𝑛+1

𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘∣𝑆𝑡 = 𝑠, 𝐴𝑡+𝑛 ∼ 𝜋(𝑆𝑡+𝑛)].

(2.3)

For notational purposes, we might elect to denote the variables we condition

on as subscripts; for example, the state-value conditioned on 𝜋 becomes

𝑣𝜋(𝑠) = E𝜋,𝑠[𝐺𝑡].

The return captures the idea of the cumulative reward signal over a period

of time, rather than just the immediate reward. Discounting allows us to

specify the time horizon that we’re interested in, reflecting the notion that the

future is uncertain, or that the near future is more important for prediction
9



purposes. The value of a state is simply the average return that an agent

will receive starting from that state while following a prescribed policy.

We assumed that 𝑃 is a function of the current state and action, so

𝑟(𝑠, 𝑎, 𝑠′) does not depend on the past history of states and actions; this is the
Markov property. In other words, knowing the current state provides as much

information as knowing the prior states visited, E𝜋[𝐺𝑡|𝑆0, 𝑆1, … , 𝑆𝑡−1, 𝑆𝑡] =

E𝜋[𝐺𝑡|𝑆𝑡]. As such, we can rewrite the value function as:

𝑣𝜋(𝑠) = E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E

𝜋
[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1|𝑆𝑡 = 𝑠]

= ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑃(𝑠, 𝑎, 𝑠′)E
𝜋

[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′]

= ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑃(𝑠, 𝑎, 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾(𝑠′)𝑣𝜋(𝑠′)).

(2.4)

This leads to the following Bellman equation:

𝑣𝜋(𝑠) = 𝑟𝜋(𝑠) + ∑
𝑠′

𝑃𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑣𝜋(𝑠′), (2.5)

where we use 𝑟𝜋(𝑠) = E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑠] and 𝑃𝜋(𝑠, 𝑠′) ≝ 𝑝(𝑆𝑡+1 = 𝑠′|𝑆𝑡 =
𝑠, 𝐴𝑡 ∼ 𝜋(𝑆𝑡)) to achieve a more compact form.

We can make the preceding much easier to work with by expressing it in

terms of linear algebra. Let 𝐏𝜋 denote the state-state transition probability

matrix such that [𝐏𝜋]𝑖𝑗 = 𝑃𝜋(𝑖, 𝑗), and let 𝐯𝜋 ∈ R be the vector whose 𝑖-th
element is 𝑣𝜋(𝑖), the value for state 𝑖. Denote by 𝐫𝜋 the expected reward

vector, with [𝐫𝜋]𝑖 = E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑖]. Further let 𝚪 be the diagonal matrix

whose (𝑖, 𝑖)-th entry is the discount factor for state 𝑠𝑖, that is, [𝚪]𝑖𝑖 = 𝛾(𝑖).

Then from (2.5) we have

[𝐯𝜋]𝑖 = [𝐫𝜋]𝑖 + ∑
𝑗

[𝐏𝜋]𝑖𝑗[𝚪]𝑗𝑗[𝐯𝜋]𝑗, (2.6)
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which, after simplification, becomes

𝐯𝜋 = 𝐫𝜋 + 𝐏𝜋𝚪𝐯𝜋. (2.7)

This is a linear functional equation, and can be solved via inversion:

𝐯𝜋 = 𝐫𝜋 + 𝐏𝜋𝚪𝐯𝜋 ⇒ (𝐈 − 𝐏𝜋𝚪)𝐯𝜋 = 𝐫𝜋. (2.8)

Assuming 𝐈 − 𝐏𝜋𝚪 is invertible, we get

𝐯𝜋 = (𝐈 − 𝐏𝜋𝚪)−1𝐫𝜋. (2.9)

Expressions like (2.7) are much easier to work with than those involving

multiple nested sums, and allow the solution to be expressed neatly as in

(2.9). The only assumption we needed was that 𝐈 − 𝐏𝜋𝚪 be invertible, and

this is the case if 𝐏𝜋 is an ergodic3 stochastic4 matrix and that the discount

factor is such that 𝛾(𝑠) < 1 for at least one state 𝑠 ∈ 𝒮.

Of course, knowing that a solution exists is not the same as being able to

find it or even approximate it. Fortunately, myriad approaches have been

developed for solving MDPs. We discuss some of them in the next section.

2.3 Learning the Value Function

If we have access to 𝐏𝜋, 𝚪, and 𝐫𝜋, then determining the value of a policy

is just a matter of matrix inversion. When the transition probabilities or

expected rewards are unknown, we might estimate them by recording the

transitions and rewards associated with each state.
3That is, aperiodic and irreducible. A transition matrix is irreducible if each state is

(eventually) reachable from every other state. For the matrix to be aperiodic, we must have
that for every state there is no integer 𝑛 > 1 such that visits to that state always occur in
multiples of 𝑛 time-steps.

4Here meaning a matrix with nonnegative entries such that the sum of each row is one.
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For example, we could run the policy on the environment and build estim-

ates of ̂𝐫 ≈ 𝐫𝜋 and �̂� ≈ 𝐏𝜋, then solve for �̂� = (𝐈 − �̂�)−1 ̂𝐫 . If we do this

naively, the memory and computation requirements can quickly become bur-

densome for moderately large MDPs; furthermore, the number of samples

required to explore the state-space and establish a reasonable estimate for

the entries of �̂� and ̂𝐫 might be excessive as well.

A more natural approach would be to record trajectories in the MDP,

recursively compute the returns, and then average them for each state, as

in Monte Carlo Prediction5. These algorithms target the complete return

(referred to as theMonte Carlo return, abbreviatedMC return), and therefore

learns an unbiased estimate of 𝐯𝜋.

Various Monte Carlo algorithms are described in Sutton and Barto (2018,

Chapter 5) (see pg. 92 in particular). They are examples of a tabular method6,

because they essentially build and update a table of state-values. While less

onerous than the matrix inversion approach, tabular methods still require at

least enough memory to store 𝑁 = |𝒮| values; this can still be problematic

with a large enough state-space.

2.4 Function Approximation

As the number of states in our problem grows larger, tabular methods be-

come proportionately less practical. Beyond the memory needed to store

estimates for each state, the tabular approach can also require a huge num-

ber of samples in order to explore the state space and establish a reliable
5Named with reference to the famous casino in Monte Carlo (Metropolis 1987). In general

usage, Monte Carlo algorithms approximate a random process by actually simulating it; in
RL, however, referring to something as a Monte Carlo method tends to imply that it updates
based on the entire return.

6Although Sutton and Barto (2018) note that it’s straightforward to extend many of
them to function approximation, at least in the on-policy case.
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estimate for the state values. In such cases, we might parameterize the value

function and adapt those parameters to approximate 𝐯𝜋. Such a value func-

tion has the form 𝑓 ∶ 𝒮×R𝑑 → R, where 𝛉 ∈ R𝑑 is a 𝑑-dimensional parameter
vector. For concision we might instead write 𝐯𝛉 instead, i.e.,

𝑓(𝑠; 𝛉) = 𝑣𝛉(𝑠) ≈ 𝑣𝜋(𝑠). (2.10)

Appropriately, this approach is referred to as function approximation.

The machine learning literature overflows with possible approximation

schemes, but linear function approximation (LFA) is perhaps the best ex-

plored. In this setting, we map each state to a feature vector, for example

𝐱 ∶ 𝒮 → R𝑑. The approximate value for a state is then just the inner product

of that 𝐱(𝑠) and 𝛉:

𝑣(𝑠) = 𝛉⊤𝐱(𝑠). (2.11)

Letting |𝒮| = 𝑁 , we can define a matrix 𝐗 ∈ R𝑁×𝑑 where each row encodes

the feature vector for the corresponding state:

𝐗 ≝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐱(1)
𝐱(2)

⋮
𝐱(𝑁)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1(1) 𝑥2(1) … 𝑥𝑑(1)
𝑥1(2) 𝑥2(2) … 𝑥𝑑(2)

⋮ ⋱ ⋮
𝑥1(𝑁) 𝑥2(𝑁) … 𝑥𝑑(𝑁)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.12)

This allows us to express the value function in vector form as 𝐯 = 𝐗𝛉.

Linear function approximation in particular has a number of advantages:

the approximations can be simply expressed and usually cheaply computed,

and it lends itself to proving stronger convergence or stability results than are

usually possible under more complicated function approximation schemes7.
7More general function approximation (for example, neural networks) may be able to

represent more complicated functions, but can take longer to train, and may converge to
different solutions depending on the details of the training process, if they converge at all.
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From a practical perspective, LFA is generally worth trying first because it

is easy to implement and its failure or success can reveal more about the

underlying structure of the problem.

2.4.1 Objectives Under Function Approximation

For problems where function approximation is actually necessary, the approx-

imate value function will never be exactly equal to the true value function.

How, then, can we determine which weights yield the best approximation?

Typically, we do this by defining an objective or error function, which meas-

ures the distance between our approximation and its target.

For reinforcement learning in particular, the standard objective is theMean

Squared Value Error, denoted VE, defined in Sutton and Barto (2018, pg.

199) as:
VE(𝐯) ≝ ‖𝐯𝜋 − 𝐯‖2

𝜇 = ∑
𝑠∈𝒮

𝜇(𝑠)[𝑣𝜋(𝑠) − 𝑣(𝑠)]2. (2.13)

VE is the Euclidean distance between 𝐯 and 𝐯𝜋 weighted according to some

distribution 𝜇 ∶ 𝒮 → R with 𝜇(𝑠) ≥ 0 ∀𝑠 ∈ 𝒮 and ∑𝑠∈𝒮 𝜇(𝑠) = 1.

For on-policy prediction, we usually set 𝜇 to the on-policy distribution,

denoted 𝑑𝜋, which weights states proportional to how often the agent visits

them. In continuing tasks, this is just the stationary distribution8.

One advantage of using VE as our objective is that minimizing it corres-

ponds to solving a weighted least squares regression problem:

𝛉LS ≝ argmin
𝛉

∥�̂�𝛉 − 𝐯𝜋∥2
𝜇

= (𝐗⊤𝐃𝜇𝐗)−1𝐗⊤𝐃𝜇𝐯𝜋, (2.14)

where 𝐃𝜇 ≝ diag(𝜇(1), 𝜇(2), … , 𝜇(𝑁)).

The associated value function, 𝐯LS = 𝐗𝛉LS, is in some sense the closest
8That is, 𝐝𝜋 = 𝐝𝜋𝐏𝜋. If 𝐏𝜋 is ergodic, then 𝐝𝜋 is the unique left eigenvector with

modulus one. For the definition of the on-policy distribution in the episodic case, see Sutton
and Barto 2018, pg. 199.
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we can get to the 𝐯𝜋 under linear function approximation. There are a

number of algorithms whose estimates converge to 𝛉LS; for example, the

already mentioned Monte Carlo Prediction.

In practice, however, methods targeting the Monte Carlo return can still

perform poorly despite being unbiased. The Monte Carlo return, being com-

prised of a sum of random variables, can exhibit high variance, requiring a

huge number of samples to get an accurate estimate. Furthermore, Monte

Carlo methods require many transitions to perform an update9, which can

limit their efficacy in continuing tasks or those with long episodes.

2.5 Temporal Difference Learning

The recursive nature of the Bellman equation allows us to avoid having to

record the full sequence of states and rewards when learning the value func-

tion. For a transition of the form (𝑆𝑡, 𝑅𝑡+1, 𝑆𝑡+1), we define the temporal

difference error, denoted 𝛿𝑡, as:

𝛿𝑡 ≝ 𝑅𝑡+1 + 𝛾𝑡+1𝑣𝑡(𝑆𝑡+1) − 𝑣𝑡(𝑆𝑡), (2.15)

where 𝑣𝑡 is the value function at time 𝑡.

If our value function is correct, we should have E𝜋[𝛿𝑡] = E𝜋[𝑅𝑡+1+𝛾𝑡+1𝑣𝑡(𝑆𝑡+1)−
𝑣𝑡(𝑆𝑡)] = 0 by definition.

Temporal difference (TD) learning (Sutton 1988) applies this observation

by using 𝛿𝑡 to define an update rule, yielding a learning agent that can

learn incrementally without needing the full return. TD methods define

approximation targets by substituting their estimate for value function for
9There exist online and incremental Monte Carlo algorithms, but we note that for an

update to have truly concluded they still require the trajectory to terminate; otherwise they
are effectively truncating the return.
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the full return, bootstrapping10 from their own initial value function.

The simplest TD method is tabular TD(0), which can be expressed quite

succinctly:

𝑣𝑡+1(𝑆𝑡) = 𝑣𝑡(𝑆𝑡) + 𝛼𝑡𝛿𝑡,

where 𝛼 is the learning rate or stepsize parameter, and 𝛿𝑡 is the temporal-

difference error. As the agent visits each state, it improves its estimate for

that state’s value, gradually building a table of state-values consistent with

the Bellman equation.

Each individual update is defined in reference to a single transition, in

contrast to Monte Carlo methods whose updates can only be said to be

complete when the trajectory has terminated. This can lead to substantial

performance gains from the reduced variance, even though the fixed-point of

Tabular TD(0) is still the true value function 𝑣𝜋.

2.5.1 TD(0) with Linear Function Approximation

Temporal difference learning can be extended to linear function approxim-

ation rather easily. At time 𝑡, let 𝐱𝑡 be the feature vector, and 𝛉𝑡 be the

weight vector. Then the TD(0) update equations are:

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1

𝑣𝑡(𝑆𝑡+1)
⏞𝛉⊤

𝑡 𝐱𝑡+1 −
𝑣𝑡(𝑆𝑡)
⏞𝛉⊤

𝑡 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐱𝑡.
(2.16)

The temporal difference error is unchanged, but instead of updating a single

entry in the table of state-values, we update each entry in the weight vector

proportional to the corresponding entry in the feature vector. We retain the
10In the sense of the colloquial expression “to pull yourself up by your own bootstraps”.

The agent starts in state of ignorance, but gradually learns about the environment, using its
own initially incorrect estimates to improve its approximation of the value function, until
eventually it attains an accurate understanding of the world it is embedded within.
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advantages of tabular TD(0), only needing information from the transition

(𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) to perform an update, with a per time-step computational

cost of 𝒪(𝑑), where 𝑑 is the dimensionality of the weight vector.

Under the usual conditions, on-policy linear TD(0) is stable and conver-

gent, with a unique fixed point, which we denote 𝛉TD(0). We can solve for its

fixed-point via11:

𝛉TD(0) = (𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗)−1𝐗⊤𝐃𝜋𝐫𝜋. (2.17)

The TD(0) fixed point (2.17) is similar to that of the least-squares solution

(2.14), but under function approximation the two are generally different. The

bias introduced by bootstrapping can lead to higher VE, but TD(0)’s lower

variance can mean better performance in practice.

2.5.2 TD(λ)

The TD(λ) algorithm (Sutton 1989) generalizes TD(0) using eligibility traces.

The idea is to keep a trace of the features activated during each time-step,

updating the weights according to the trace rather than just the current

features.

Adjusting the bootstrapping hyperparameter 𝜆 allows the agent to vary

how much it relies on its own value estimates versus the reward sequence.

When 𝜆 = 0, the updates are the same as in TD(0) (c.f . (2.16)), while for

𝜆 = 1, the traces are a discounted record of the feature activations, making

TD(1) essentially a form of online Monte Carlo12. For values of 𝜆 between 0

and 1, we can think of TD(λ) as interpolating between the TD(0) solution

and the MC solution.
11For details on how these fixed-point equations are derived, see Tsitsiklis and Van Roy

(1997), Sutton, Mahmood and White (2015) and Mahmood (2017).
12We can think of TD(1) as a form of every-visit Monte Carlo under exponential averaging

determined by 𝛼.
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The update equations for TD(λ) with accumulating traces are barely more

complicated compared to those for TD(0):

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝛉⊤
𝑡 𝐱𝑡+1 − 𝛉⊤

𝑡 𝐱𝑡

𝐳𝑡 = 𝛾𝑡𝜆𝑡𝐳𝑡−1 + 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐳𝑡.

(2.18)

It turns out that updating with eligibility traces actually leads to a new

approximation target13, called the 𝜆-return and defined by:

Definition 2.1 (λ-return)

For some value function 𝑣 ∶ 𝒮 → R, we denote by 𝐺𝜆
𝑡 the λ-return, denoted

𝐺𝜆
𝑡 and defined as:

𝐺𝜆
𝑡 ≝ 𝑅𝑡+1 + 𝛾𝑡+1(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1) + 𝛾𝑡+1𝜆𝑡+1𝐺𝜆

𝑡+1

=
∞

∑
𝑛=1

(
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘𝜆𝑡+𝑘)(𝑅𝑡+𝑛 + 𝛾𝑡+𝑛(1 − 𝜆𝑡+𝑛)𝑣(𝑆𝑡+𝑛)),
(2.19)

where we use the convention that ∏𝑗
𝑖 𝑎𝑖 = 1 for 𝑖 > 𝑗. For constant 𝛾 and 𝜆,

it simplifies to

𝐺𝜆
𝑡 = ∑

𝑛=1
(𝛾𝜆)𝑛−1(𝑅𝑡+𝑛 + 𝛾(1 − 𝜆)𝑣(𝑆𝑡+𝑛). (2.20)

Different values of λ induce a different approximation target, which in turn

lead to a different fixed-point for the weights14:

𝛉TD(λ) = [𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1(𝐈 − 𝐏𝜋𝚪)𝐗]−1𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1𝐫𝜋

= 𝐀−1
𝜆 𝐛𝜆,

(2.21)
13See Sutton and Barto (2018, Chapter 12, pg. 287-) for further details.
14See Sutton, Mahmood and White (2015) for a very readable derivation of this result,

as well as Mahmood’s thesis (Mahmood 2017) for a detailed examination of general value
functions, including a surprising result on the instability of on-policy TD(λ) with state-
dependent bootstrapping.
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where
𝐀𝜆 ≝ 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1(𝐈 − 𝐏𝜋𝚪)𝐗,

𝐛𝜆 ≝ 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1𝐫𝜋.
(2.22)

Values of λ less than one lead to a biased solution, but the updates tend

to have lower variance. Empirically, some amount of bootstrapping usually

speeds learning. For constant λ with linear function approximation, TD(λ)

will eventually converge (Tsitsiklis and Van Roy 1997; Mahmood 2017), but

the value that works best can be highly problem dependent.

2.6 Differential Equations and Stochastic Ap-

proximation

Proving that a learning algorithm behaves reliably, in particular that it is

stable and convergent, can be done in a variety of ways, but one of the

most powerful techniques invokes concepts from the theory of differential

equations.

We start by observing that many stochastic approximation schemes have

the general form:

𝐳𝑛+1 = 𝐳𝑛 + 𝛼𝑛𝐘𝑛+1, (2.23)

for some sequence of 𝑑-dimensional random variables {𝐘𝑛}.

Each 𝐘𝑛 might represent e.g. stochastic gradients, but could also stand for

some more exotic means of updating the parameter vector 𝐳. Of particular
interest is when {𝐘𝑛} is such that there is some continuous function 𝐟 ∶ R𝑑 →
R𝑑 such that

𝐟 (𝐳𝑛+1) = E[𝐘𝑛+1|𝐘0, 𝐘1, … , 𝐘𝑛, 𝐳0], (2.24)
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allowing us to write (2.23) as:

𝐳𝑛+1 = 𝛼𝑛[𝐟 (𝐳𝑛) + 𝐌𝑛+1]. (2.25)

Here:

∘ {𝛼𝑛} denotes a sequence of real-valued stepsizes.

∘ 𝑓 ∶ R𝑑 → R𝑑 denotes a deterministic map

∘ {𝐌𝑛+1} = 𝐘𝑛+1 − 𝐟(𝐳𝑛) is a 𝑑-dimensional noise sequence.

We can interpret (2.25) as a noisy Euler scheme15 for the following differ-

ential equation:

̇𝐳(𝑡) = 𝐟(𝐳(𝑡)). (2.26)

The evolution of (2.26) only corresponds to the iterates of (2.23) when there is

no noise16 and the stepsize approaches zero. At first glance, this might seem

excessively restrictive. However, under the right conditions, the two systems

are similar enough that we can learn about the behavior of the SA algorithm

by analyzing the limiting ODE, which is fortunate because deriving results

about continuous systems can be much easier.

To permit comparison between the SA method and its limiting ODE at

arbitrary points in time, we define the interpolated ODE. Let 𝑡𝑛 be defined

as

𝑡𝑛+1 ≝ 𝑡𝑛 + 𝛼𝑛 =
𝑛

∑
𝑘=0

𝛼𝑘, with 𝑡0 ≝ 0, (2.27)

then the interpolated ODE, denoted 𝐳(𝑡), is:

𝐳(𝑡) ≝ 𝐳(𝑡𝑛) + (𝑡 − 𝑡𝑛
𝛼𝑛

)[𝐳(𝑡𝑛+1) − 𝐳(𝑡𝑛)]. (2.28)

Then 𝐳(𝑡) has the value of 𝐳𝑛 for 𝐳(𝑡𝑛), and for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1) is the convex
15A discretization of a continuous ordinary differential equation. In general, Euler schemes

are numerical methods for solving ODEs, see Press et al. (2007, Chapter 17, pg. 907) or a
similar work on numerical computing for further details.

16That is, 𝐌𝑛+1 = 𝟎 ∀𝑛 ≥ 0
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combination of 𝐳𝑛 and 𝐳𝑛+1. If we can establish that 𝐳(𝑡) remains “close”

to the limiting ODE, then proving results about 𝐳(𝑡) provides a means of

establishing a similar claim for the associated SA scheme.

2.6.1 The Limiting ODE of TD(0)

To give a concrete example, we examine TD(0) in the ODE framework. For

convenience, we assume that the rewards depend only on the state-state

transition17:
Assumption 2.1 (Transition Rewards)

The rewards for a given transition is independent of the action taken:

𝑟(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑠′) ≝ E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′]. (2.29)

With 𝓐. 2.1 in mind, we define the expected reward matrix and vector as

𝐑 ≝ [[[𝑟(𝑖, 𝑗)]]] ∈ R𝑁×𝑁 for 𝑖, 𝑗 = 1, 2, … , 𝑁,

𝐫 ≝ [[[𝑟(𝑖)]]] ∈ R𝑁 for 𝑖 = 1, 2, … , 𝑁.
(2.30)

Furthermore, we assume that the transitions are sampled independently from

an identical distribution:
Assumption 2.2 (Independent transition samples)

The sequence {(𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛)}∞

𝑛=1 are independent and identically distributed

samples of (𝑠, 𝑟, 𝑠′).

𝓐. 2.2 is commonly employed in the literature18, although it is somewhat
17 𝓐. 2.1 serves to simplify the notation and consequently the proofs, but does not really

affect the conclusions we can draw. Similar results can be proved when the reward is action
dependent, but they are more complicated to express because we must invoke tensor notation
to describe them.

18 As others have noted (Dalal et al. 2017, footnote 1), this assumption does not hold in
practice; however its use is standard in establishing reinforcement learning results. Other
conditions that might replace it are not necessarily more realistic, e.g. Tsitsiklis and Van
Roy (1997) requires exponential mixing for the Markov chain. For an aperiodic, irreducible
Markov chain, the mixing time is indeed exponential (Levin and Peres 2017, Theorem 4.9)
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unrealistic. As a consequence, 𝐱(𝑠𝑛) = 𝐱𝑛 and other quantities that depend

only on the current transition are also i.i.d.

Then for a transition (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛), the TD(0) updates have the same form

as (2.25):

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛉⊤
𝑛(𝛾′

𝑛𝐱′
𝑛 − 𝐱𝑛)]𝐱𝑛 (2.32)

= 𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1], (2.33)

where 𝐠 ∶ R𝑑 → R𝑑 is the “mean” or “expected” update, and represents the

change in the weights we would observe on average sampling over (𝑠, 𝑟, 𝑠′).
It is defined by

𝐠(𝛉) ≝ 𝐛 − 𝐀𝛉 = −𝐀[𝛉 − 𝛉∗] (2.34)

where 𝛉∗ = 𝐀−1𝐛, with the matrix 𝐀 and the vector 𝐛 given by19:

𝐀 = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗 𝐀 ∈ R𝑑×𝑑, (2.35)

𝐛 = 𝐗⊤𝐃𝜋𝐫𝜋 𝐛 ∈ R𝑑. (2.36)

in the sense that the distance between the distribution after 𝑘 time-steps and the stationary
distribution 𝐝𝜋 shrinks as

‖𝐬⊤
0 𝐏𝑘

𝜋 − 𝐝𝜋‖1 ≤ 𝐶𝜉𝑘 (2.31)
for some 𝐶 > 0 and 𝜉 ∈ (0, 1) with arbitrary initial distribution 𝐬0. For 𝜉 close to zero,
mixing is rapid enough as to make the samples effectively i.i.d., but for 𝜉 close to one the
samples are highly correlated.
However, simulations tend to agree with the results derived under the i.i.d. assumption,

suggesting that a more careful analysis might succeed in removing it. Intriguingly, such an
analysis might also provide indications for convergence acceleration methods if it reveals
situations under which the i.i.d. assumption falls apart.
Even if that proves intractable, modifications to the algorithms could unify implement-

ation with theory. For example, in online learning with deep networks, it is common to
use a replay buffer with randomized sampling. This reduces correlation between individual
samples; transformations applied to the features (Ghiassian et al. 2018) can also help in this
regard.

19In essence, 𝐀 = E𝜋[𝐱𝑛(𝛾′
𝑛𝐱′

𝑛 −𝐱𝑛)⊤] and 𝐛 = E𝜋[𝐱𝑛𝑟𝑛], which can be found by rearranging
(2.32) and taking the expected value.
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The noise is denoted 𝐌𝑛+1 and is defined as:

𝐌𝑛+1 ≝ 𝛿𝑛(𝛉𝑛)𝐱𝑛 − 𝐠(𝛉𝑛) = [𝑟𝑛 + 𝛉⊤
𝑛(𝛾′

𝑛𝐱′
𝑛 − 𝐱𝑛)]𝐱𝑛 − [𝐛 − 𝐀𝛉𝑛],

(2.37)

where

𝛿𝑛(𝛉) ≝ 𝑟𝑛 + 𝛉⊤(𝛾′
𝑛𝐱′

𝑛 − 𝐱𝑛) (2.38)

is the TD error with weights 𝛉 and a sample (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛).

Then the limiting ODE of (2.34) is:

�̇�(𝑡) = 𝐠(𝛉(𝑡)) = 𝐛 − 𝐀𝛉(𝑡) = −𝐀(𝛉(𝑡) − 𝛉∗). (2.39)

Equation (2.39) has a closed form solution if 𝐀 is invertible20:

𝛉(𝑡) = 𝑒−𝑡𝐀(𝛉0 + ∫
𝑡

0
𝑒𝜏𝐀𝐛 d𝜏)

= 𝑒−𝑡𝐀𝛉0 + 𝑒−𝑡𝐀𝐀−1(𝑒𝑡𝐀 − 𝐈)𝐛

= 𝐀−1𝐛 + 𝑒−𝑡𝐀(𝛉0 − 𝐀−1𝐛)

= 𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛(𝐈 − 𝑒−𝑡𝐀),

(2.40)

where 𝛉0 is the initial value, i.e. 𝛉(0) = 𝛉0.

In fact it can be shown that 𝐀 is invertible (c.f . Bertsekas 2012, Chapter

6.3), and furthermore that it is positive definite21. That is, the eigenvalues of

𝐀 have positive real part, which implies that lim𝑡→∞ 𝑒−𝐀(𝑡−𝑠) = 0. Therefore:

lim
𝑡→∞

𝛉(𝑡) = lim
𝑡→∞

(𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛(𝐈 − 𝑒−𝑡𝐀))

= �����:0𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛 − ������:0𝑒−𝑡𝐀𝑒−𝑡𝐀

= 𝐀−1𝐛 = 𝛉∗,

(2.41)

as might be expected.
20See Hirsch, Smale and Devaney (2013, Chapter 6, pg. 132.).
21In the sense that 𝐳⊤𝐀𝐳 > 0 for 𝐳 ∈ R𝑑 and 𝐳 ≠ 𝟎.
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Recognizing 𝐀−1𝐛 = 𝛉∗ as the TD fixed point, (2.40) can be rewritten as:

𝛉(𝑡, 𝑠, 𝛉𝑠) = 𝛉∗ + 𝑒−𝐀(𝑡−𝑠)(𝛉𝑠 − 𝛉∗) (2.42)

where we use 𝛉(𝑡, 𝑠, 𝛉𝑠) to denote the solution of (2.39) at time 𝑡 starting

from time 𝑠 with initial value 𝛉𝑠. Written like this, it is obvious that TD(0)’s

limiting ODE (2.42) converges to 𝛉∗ as time goes to infinity.

While it is reassuring that the limiting ODE (2.39) has the same solution

as the SA scheme (2.33), we need to verify that the ODE approach accurately

captures the behavior of the discrete time updates. Under some reasonable

assumptions, this is indeed the case, and eventually the sequence {𝛉𝑛} gen-

erated by (2.33) becomes arbitrarily close to the trajectory of (2.42).

We delay stating the relevant results, however, because we are interested

in the convergence of a broader class of algorithms, which will be described

in the following section.

2.6.2 Two Timescale Convergence

Convergence analyses for algorithms like TD(0) benefit from the fact that

the expected update (and therefore the limiting ODE) have some “nice” form.

In Section 2.6.1, we noted that 𝐀 is invertible, so �̇� = −𝐀(𝛉 − 𝛉∗) has a

closed form solution, and since 𝐀 is positive definite we could show that

asymptotically 𝛉(𝑡) → 𝛉∗.

Sadly, not every algorithm has such a convenient form. In particular, there

are those with more complicated update methods, where some parameters are

updated at different rates or with separate rules for some sub-components.

Fortunately, we can take advantage of existing results on “two-timescale”

stochastic approximation schemes. These results hold for algorithms with
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update rules of the form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛, 𝛉𝑛) + 𝐍𝑛+1], (2.43)

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝐰𝑛, 𝛉𝑛) + 𝐌𝑛+1], (2.44)

where 𝐰 ∈ R𝑑1 , 𝛉 ∈ R𝑑2 , 𝛽𝑛 and 𝛼𝑛 are stepsizes, 𝐡 ∶ R𝑑1 × R𝑑2 → R𝑑1

and 𝐠 ∶ R𝑑1 × R𝑑2 → R𝑑2 are deterministic functions, and 𝐍𝑛+1 ∈ R𝑑1 and

𝐌𝑛+1 ∈ R𝑑1 are noise sequences.

The key to establishing convergence for such schemes is to treat one of the

components as acting on a “faster” timescale relative to the other22. With

sufficiently separated timescales, the slow iterates appears almost constant

to the fast component; from the perspective of the slow component, the fast

part seems to be a rapidly equilibrated transient23.

For the purposes of analysis, we can regard

�̇�(𝑡) = 𝐡(𝐰(𝑡), 𝛉) (2.45)

as representing the fast component, with 𝛉 held fixed. If we assume that

(2.45) has an asymptotically stable equilibrium as a function of 𝛉 (say 𝐰∗(𝛉)),
then we would expect the slow ODE to behave like:

�̇�(𝑡) = 𝐠(𝐰∗(𝛉(𝑡)), 𝛉(𝑡)). (2.46)

This can be interpreted as saying that, on the slower timescale, the fast part

is effectively a function of the slow component because it reaches equilibrium

(provided one exists) with such alacrity.

22In the parlance of differential equations, this is part of the theory of “singularly perturbed
ODEs”.

23An analogy might be drawn to algorithms with a nested loop structure, where after each
step in the outer loop, the inner loop is repeated until its updates converge (or at least are
smaller than some tolerance).
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There is a substantial amount of previous work on two-timescale systems,

but for our purposes the results from Borkar (2008) will suffice. We begin

by stating the needed assumptions:

Assumption 2.3 (Stepsize Sequence)

The stepsize sequences {𝛼𝑛} and {𝛽𝑛} satisfy
∞

∑
𝑘=0

𝛽𝑘 =
∞

∑
𝑘=0

𝛼𝑘 = ∞,
∞

∑
𝑘=0

𝛽2
𝑘 + 𝛼2

𝑘 < ∞, lim
𝑛→∞

𝛼𝑛
𝛽𝑛

= 0, (2.47)

with 𝛽𝑘, 𝛼𝑘 > 0 for 𝑘 ∈ N.

Which is to say {𝛽𝑘} and {𝛼𝑘} are sequences of positive scalars whose sum
has no finite limit, but the sum of each sequence’s squares is finite.

This assumption is similar to the standard Robbins-Munro conditions, but

the additional restriction on the ratio of the stepsizes leads to timescale

separation. Hearkening back to (2.27), if we regard time elapsed for the slow

component as 𝑇𝛼(𝑛) = ∑𝑛
𝑖=0 𝛼𝑖, and 𝑇𝛽(𝑛) = ∑𝑛

𝑖=0 𝛽𝑖 for the fast component,

then 𝓐. 2.3 ensures that 𝑇𝛼(𝑛)/𝑇𝛽(𝑛) → 0. We can interpret this as saying

the slow component runs for a shorter time than the fast component, given

the same number of iterations.

The next assumption ensures that the limiting ODE has a unique solution:

Assumption 2.4 (Lipschitz Mapping)

The maps 𝐡 ∶ R𝑑1 × R𝑑2 → R𝑑1 and 𝐠 ∶ R𝑑1 × R𝑑2 → R𝑑1 are Lipschitz24.

The following conditions ensure that the martingale noise cannot cause

divergence:

Assumption 2.5 (Martingale Difference Sequence)

The sequences {𝐍𝑛} and {𝐌𝑛} are a square-integrable martingale difference
24Recall that a function is Lipschitz if there exists some positive scalar 𝐶 such that for

all 𝐲, 𝐳 ∈ R𝑑:
‖𝐠(𝐲) − 𝐠(𝐳)‖ ≤ 𝐶‖𝐲 − 𝐳‖. (2.48)
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sequences with respect to the family of filtrations

ℱ𝑛 = 𝜎(𝐰0, 𝛉0, 𝐍1, 𝐌1, … , 𝐍𝑛, 𝐌𝑛) = 𝜎(𝐰0, 𝛉0, {(𝐍𝑘, 𝐌𝑘) ∶ 𝑘 ≤ 𝑛}).
(2.49)

Assumption 2.6 (Martingale Bound)

For all 𝑛 ∈ N there exists some 𝐾𝑚 > 0 such that

E[‖𝐍𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],

E[‖𝐌𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],
(2.50)

which is to say the martingale difference sequences {𝐍𝑛} and {𝐌𝑛} are

bounded from above in terms of the norms of the iterates.
Assumption 2.7 (Bounded Iterates)

The iterates of (2.43) and (2.44) remain bounded almost surely:

sup
𝑛

(‖𝐰𝑛‖ + ‖𝛉𝑛‖) < ∞ a.s. (2.51)

We also need that each of (2.45) and (2.46) converges on their respective

timescales:
Assumption 2.8 (Fast Component Convergence)

The fast component,

�̇�(𝑡) = 𝐡(𝐰(𝑡), 𝛉), (2.45)

has a globally asymptotically stable equilibrium that is a function of 𝛉, which
we denote by 𝐰∗(𝛉). Furthermore, 𝐰∗ ∶ R𝑑2 → R𝑑1 is Lipschitz continuous.

Assumption 2.9 (Slow Component Convergence)

The slow timescale ODE,

�̇�(𝑡) = 𝐠(𝐰∗(𝛉(𝑡)), 𝛉(𝑡)), (2.46)

has a globally asymptotically stable equilibrium 𝛉∗.

Provided these conditions hold, then we can apply some results from Borkar
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(2008) regarding the system’s convergence25:

Lemma 2.1 (Fast Timescale Convergence)

Assume 𝓐. 2.1 to 2.9. Then the iterates of (2.43) and (2.44) converge

almost surely to the internally chain transitive invariant sets of the ODE

�̇�(𝐰(𝑡), 𝛉(𝑡)), �̇�(𝑡) = 0. That is, (𝐰𝑛, 𝛉𝑛) → {(𝐰∗(𝛉), 𝛉) ∶ 𝛉 ∈ R𝑑2}.

This lemma essentially states that 𝐰𝑛 will asymptotically track 𝐰∗(𝛉𝑛) with
probability one, and leads to the main result we will use:

Theorem 2.2 (Overall Convergence)

Assume 𝓐. 2.1 to 2.9.

Then the iterates of (2.43) and (2.44) converge to (𝐰∗(𝛉∗), 𝛉∗) almost
surely. More precisely:

Pr( lim
𝑛→∞

(𝐰𝑛, 𝛉𝑛) = (𝐰∗, 𝛉∗)) = 1 (2.52)

which states that the iterates of the stochastic approximation scheme will

ultimately converge to the fixed point of the two-timescale ODE.

25See Chapter 6 of Borkar 2008, in particular Lemma 1 and Theorem 2.
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CHAPTER 3

FUNCTiONS OF THE RETURN

In this chapter, we discuss learning functions of the return as an alternative

to modifying the return to make a problem more amenable to reinforcement

learning. We describe some of the ways this formulation can make task

specifications more precise or flexible, particularly when a problem has a

natural return associated with it that only needs adjustment in order to

clarify what we wish to predict or optimize.

We then review previous work touching on estimating functions of the

return, along with some proposed extensions. We discuss methods for estim-

ating the moments of the return, and describe how to use these moments

to approximate more general functions using parametric methods or Taylor

series. We also provide an overview of distributional reinforcement learning,

which provides an alternative way of approximating functions of the return.

3.1 The Reward Hypothesis in Practice

The reward hypothesis in reinforcement learning states that everything that

we might want to optimize can be formulated as a return:

That all of what we mean by goals and purposes can be thought of as
the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).1

1Reinforcement Learning: An Introduction, page 53. According to the chapter notes, it
was first suggested by Michael Littman in a personal communication with the authors.
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Assuming that achieving a goal is quantifiable2, then the reward hypothesis

is, if not self-evidently true, at least not immediately falsifiable.

Sometimes the form that the rewards (and thus the return) should take is

obvious. For example, in shortest path problems, the objective is to select a

route that goes from one location to another with minimum total cost. The

costs of each move map to the (negative) transition reward, and the return

is then the undiscounted sum of these rewards. These sorts of problems are

easier for agents to learn, because every transition is informative.

Other tasks are somewhat more difficult, because even if we know what

the return should be, the rewards are sparse, i.e., mostly zero, and so the

agent receives no feedback over long periods of time. When it does receive

a non-zero reward, it is hard to gauge which transitions were responsible for

it. For example, in board games such as Chess or Go, the return might be

one of {1, −1, 0} depending if the agent wins, loses, or draws, provided by

a reward on the final move. The reward for all the preceding moves is zero,

because the outcome of the game is indeterminate until the end.

Board games can last for hundreds of moves, but they can be simulated

efficiently, so sparsity issues can be overcome by training the agent through

self-play at superhuman speeds. More complicated games, such as DotA 2,

can last for tens of thousands of frames3 before the outcome is reached; they

are also less amenable to simulation. To make learning more tractable, an

experimenter might modify the reward function to incentivize behavior they

expect to be conducive to the underlying goal. Early efforts in computer

Chess, for example, provided bonuses for capturing an opponent’s pieces

or placing the enemy king in check. These bonuses can conflict with the
2That is, we have some way of representing success as a number– it might be binary

(whether the goal was accomplished or not) or real-valued when there are degrees of success.
3The average game takes around thirty or forty minutes, with a 30Hz update rate, giving

54, 000 − 72, 000 time-steps for a typical match.
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directive to win—material advantage is irrelevant if you ultimately lose the

game—but sometimes a flawed reward function is better than one that is

excessively sparse.

More complex or abstract goals may not even have an obvious return, let

alone a clearly defined reward. For example:

∘ Producing a great work of art,
∘ Investing funds to achieve a comfortable level of wealth,
∘ Playing a game in an entertaining fashion,
∘ Preparing a delicious meal,
∘ Generating an appropriate response to a question,
∘ Controlling a robot in a graceful manner.

Note the many adjectives employed in the tasks described above. We can

formulate a return for a game-playing agent and teach it to win, but those

victories might be cheapened if they are the result of a boring strategy that

only a machine would have the patience to execute. The real purpose of

playing a game is to have fun, but it is not clear how to express this4 without

recourse to external evaluation.

That is, we can still define a return that captures whether the agent has

succeeded at the actual goal if we incorporate human consultation5, although

this might introduce problems of its own. Feedback can be subjective and

inconsistent; even if an agreeable metric of success can be determined, col-

lecting samples will be expensive6. These issues are not insurmountable, but

can make training the agent too difficult or costly in practice.

So while the reward hypothesis remains intact, our goal to produce a

successful learning agent may be infeasible depending on the problem in
4i.e., to put the“fun” in “function”.
5To check whether our agent has produced a great work of art, we merely have to let it

create something, and then wait decades or centuries in order to find out whether it was
well-received.

6In terms of financial cost or the time and effort needed to acquire them.
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question.

As when dealing with sparse rewards, the usual approach is to modify

the task specification to make it easier to learn, ideally without deviating

too much from the original version of the problem. Typically, this involves

coming up with a proxy for the underlying objective that is easier to measure

or compute. This strategy is required so frequently that it is easy to conflate

the proxy task with the original goal. However, differences between the real

objective and the proxy can lead to unexpected or undesirable behavior from

the learning agent.

For example, we might approximate the goal “generate an appropriate

reply to a question” by having our agent answer queries on a social media

website and reward it according to the feedback from that site’s other users.

Insofar as our definition of “appropriate” is based on approbation, this proxy

is reasonable. However, if the real goal of our project was to correct misin-

formation, then this proxy might teach the agent to produce responses that

merely seem correct, thereby exacerbating the problem we were trying to

solve.

The problem of codifying our intentions such that learning is feasible while

avoiding undesired behavior is of substantial practical and theoretical in-

terest.

While we do not have a solution in general, we note that many interesting

tasks have a natural reward associated with them, one that almost captures

the spirit of what we wish to predict or optimize. We believe that in such

cases, rather than using reward shaping or modifying the problem specific-

ation, it would be better to instead learn the obvious prediction target and

then adjust it as circumstance demands. The strategy we have in mind is
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learning to estimate functions of the return of the form:

𝜓𝜋(𝑠) = E
𝜋
[𝑓(𝐺𝑡)|𝑆𝑡 = 𝑠]. (3.1)

This approach can avoid pitfalls arising from changing the task specification

while allowing us to formulate our predictions and goals more precisely. It is

distinct from merely modifying the value function after learning, as generally

E𝜋 [𝑓(𝐺𝑡)] ≠ 𝑓(E𝜋[𝐺𝑡]).

We provide some examples to illustrate how this could be useful:

Example: Route Selection If we were training an autonomous car to

transport people around, then the obvious choice for the approximation tar-

get would be “time required to reach a destination”7, corresponding to a

reward of −1 for each time-step where the agent has not yet arrived at the

goal. An agent trained with these rewards will learn to choose the fastest

route, and its passengers will be happy insofar as they value their time. This

setup is also conducive to learning: as the agent goes from the start to its

destination, it can update its estimate for the travel time at each point along

the way.

However, when travelling to an appointment where punctuality is crucial,

the route that is fastest on average is not necessarily ideal, if it is prone to

the occasional unpredictable delay. The risk of such a delay causing you to

arrive late could outweigh the benefit of a few minutes saved. Rather, the

better policy is one that ensures you will make it to your destination on time,

even if it is a bit slower than the alternative.
7Ignoring things like fuel costs, distance travelled, or (as seems fashionable) passenger

safety.
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Figure 3.1: An example of when optimizing for the best travel time on average can be
counterproductive if there is an additional requirement to arrive before a certain time.
Here we model two different routes as having normally distributed arrival times, with
𝑋1 ∼ 𝒩(60, 7.5) and 𝑋2 ∼ 𝒩(55, 15). The second route (corresponding to 𝑋2) is
quicker in expectation, but if we want to arrive in 75 minutes or less, we find that we
will be late approximately 9% of the time. The first route is slower on average, but we
will only be late about 2% of the time if we choose it instead.

We could, of course, change the formulation of the problem to match the

goal of “reaching the destination on time”, perhaps by setting the reward to 1
if we arrive on schedule and 0 if we are late, or something along similar lines.

To accommodate anxious travellers, the agent could perhaps keep track of

how to make it from one place to another under a panoply of different time

budgets using off-policy learning.

While we have salvaged the reward hypothesis, in practice this makes

the problem significantly more complicated. The agent would have to learn

policies for each possible time budget, possibly more depending on whether

the travellers need to reach their destination within a certain time frame or

would merely prefer to not be unfashionably late.

If, instead, we kept the “natural” rewards, but learned to estimate the distri-

bution of the return (rather than just its mean), we would be able to compute

E𝜋[𝑓(𝐺𝑡)] for different choices of 𝑓(⋅). We believe that learning general facts
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about the environment and then adapting them to specific needs provides a

more extensible, and potentially more efficient8 approach to designing and

training learning agents.

Example: Investing The goal of a trading algorithm might be to max-

imize its profit, and so an obvious choice for the reward would be the gain

or loss from its trades. This simple reward function provides a reasonable

baseline for measuring performance, but most market participants also care

about the risk associated with their investments. Volatile securities might be

a source of short-term profit, but over longer time-spans, assets with more

consistent returns can produce higher growth.

One might object that this can be addressed by refining how we measure

performance to take compounding into effect without having to use functions

of the return. Even so, the existence of many different financial products

which appeal to different investors points to a deeper issue: the point of

investing is not so much maximizing the value of one’s accounts so much as

maximizing the utility derived from those funds9. Rather than learning a

slightly different value function for each investor, we could instead learn to

predict the possible outcomes for different asset allocations and then evaluate

how desirable each choice is on an individual basis.
8Insofar as estimating the distribution of the return can be done reliably and that a

function of the distribution can be computed in a convenient manner.
9Quoting William Micawber in Dickens’ Great Expectations, “Annual income twenty

pounds, annual expenditure nineteen nineteen and six, result happiness. Annual income
twenty pounds, annual expenditure twenty pounds ought and six, result misery.” A budget
shortfall can be extremely stressful, much more so than having an equivalent surplus is
pleasant.
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3.2 Why Not Just Directly Estimate?

If learning to predict or optimize functions of the return could be useful, why

is this approach not in common use? Mainly, it is because this is difficult

to do without removing the reasons we employ reinforcement learning in the

first place.

One key advantage offered by RL methods is that they can learn in the

present, even when the ultimate outcome has yet to be revealed. That is,

they can adapt by trial-and-error without requiring full knowledge of their

actions’ future effects.

The clearest way to see this is by following the math. First, note the

return’s recursive form:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝑅𝑡+𝑛+1
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘 = 𝑅𝑡+1 + 𝛾𝑡+1𝑅𝑡+2 + 𝛾𝑡+1𝛾𝑡+2𝑅𝑡+3 + ⋯

= 𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1.
(2.2)

If the environment is Markovian, then the value (expected return) of a given

state under policy 𝜋 can be expressed as a Bellman equation:

𝑣𝜋(𝑠) ≝ E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E

𝜋,𝑠
[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1]

= E
𝜋,𝑠

[𝑅𝑡+1] + E
𝜋,𝑠

[𝛾𝑡+1𝑣𝜋(𝑆𝑡+1)].
(3.2)

Without knowing the true value function 𝑣𝜋, we can still estimate the value

of a state using an approximation of the value function, say ̂𝑣:

̂𝑣(𝑠) = E
𝜋,𝑠

[𝑅𝑡+1 + 𝛾𝑡+1 ̂𝑣(𝑆𝑡+1)]

≈ 𝑣𝜋(𝑠).
(3.3)

We could then modify ̂𝑣 to make it more consistent with itself10 thereby
10For example, using temporal difference methods (see Section 2.5).
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bringing it closer to 𝑣𝜋, or adjust 𝜋 to improve the expected return, all

without waiting to observe the rest of the reward sequence.

However, if we consider the expectation of a nonlinear function of the

return, things become dicier. It is generally no longer possible to separate

the expected return into a term for the current reward and a term associated

with the return from the next state, as 𝑓(𝐺𝑡) ≠ 𝑓(𝑅𝑡+1)+𝑓(𝛾𝑡+1𝐺𝑡+1) unless
𝑓(⋅) is linear.

Of course, we could just record the full return for each state, compute

𝑓(𝐺𝑡), and then approximate 𝑢(𝑠) = E𝜋[𝑓(𝐺𝑡)|𝑆𝑡 = 𝑠] as if we were doing
supervised learning. For the class of problems where we would like to use

reinforcement learning11, this knowledge is cold comfort.

Unless we can somehow formulate E𝜋[𝑓(𝐺𝑡)] as a Bellman equation, it

would seem we must either try a different sort of algorithm, or resign ourselves

to learning something other than our preferred prediction target. Fortunately,

we are not reduced to barbarity just yet.

3.3 Estimating Functions of the Return

Having argued for the desirability of learning to estimate functions of the re-

turn, we now proceed to describe how this might be done. Broadly speaking,

there are two main lines of attack:

1. Learn the moments of the return, and use these to approximate func-

tions of the return.

2. Learn to estimate the distribution of the return and evaluate the func-

tion on this distribution.

The first approach builds on the work of Sobel (1982), Tamar, Castro
11Problems that benefit from online, incremental improvement, as well as those with

computation or memory constraints.
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and Mannor (2016), White and White (2016), Sato, Kimura and Kobayashi

(2002) and Munos and Moore (1999), while the distributional approach is

a relatively recent development. We briefly describe both techniques in the

following sub-sections.

3.3.1 Moment Estimation

The moments of a probability distribution provide a way to characterize that

distribution in terms of how its probability mass is located relative to some

point. The term “moment” itself derives from an analogy with physics12,

where the moment of inertia summarizes how the mass of a system is dis-

tributed. As in physics, the moments of a distribution depend on where you

measure from; typically, we consider the moments either with reference to

zero or to the distribution’s mean.

The 𝑛-th moment (sometimes referred to as a raw moment) of a random

variable 𝑋 (denoted 𝜇𝑛) is defined as

𝜇𝑛 ≝ E[𝑋𝑛] = ∫
∞

−∞
𝑥𝑛𝑓𝑋(𝑥)d𝑥, (3.4)

where 𝑓𝑋(⋅) is the probability density function for 𝑋.

The first moment is just the expected value of 𝑋, and is common enough

that we typically write 𝜇 in place of 𝜇1. These raw moments are somewhat

difficult to interpret for 𝑛 ≥ 2, so it is common to instead consider the “higher
moments” centered around the mean13.

12According to David (1995), it was introduced by Karl Pearson in a letter to
Nature (Pearson 1893), wherein he describes a method of fitting curves to a binomial distri-
bution.

13In physics, for 𝑛 = 2, the corresponding raw moment would be the moment of inertia
with respect to the origin, which might be useful as part of some larger calculation. This
is informative in probability theory, since the origin can be somewhat arbitrary; we define
the raw moments with respect to zero primarily because it’s a unique reference point on the
real line.
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The 𝑛-th central moment, which we denote by 𝑐𝑛, is given by:

𝑐𝑛 ≝ E[(𝑋 − 𝜇)𝑛] = ∫
∞

−∞
(𝑥 − 𝜇)𝑛𝑓𝑋(𝑥)d𝑥 (3.5)

For 𝑛 = 2, we have 𝑐2 = Var [𝑋], the variance of 𝑋. It can be thought of as

a measure of dispersion for 𝑋. When the distribution is tightly concentrated

around the mean, the variance is low; if most of the probability mass is far

from the mean, then the variance will be higher.

The higher central moments measure the lopsidedness (for 𝑛 odd) or tailed-

ness of the distribution (when 𝑛 is even). These can be useful to know, but

for even knowing a few moments allows us to express a number of common

distributions14.

Although the central moments are a bit easier to interpret, sometimes it is

easier to work with raw moments instead. The raw moments and the central

moments are related by a binomial transformation, so if we know 𝑛 moments

of either type, we can convert between the two kinds:

𝑐𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)(−1)𝑛−𝑘𝜇𝑘𝜇𝑛−𝑘

1 ,

𝜇𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑐𝑘𝜇𝑛−𝑘

1 .
(3.6)

14For example, we only need to know the mean and the variance to determine the form
of a Gaussian distribution.
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3.3.2 The Return’s Second Moment as a Bellman Equa-

tion

The return is a random variable, so its second moment for state 𝑠 can be

expressed using (3.4) as:

𝑣(2)
𝜋 (𝑠) ≝ E

𝜋
[𝐺2

𝑡 |𝑆𝑡 = 𝑠]. (3.7)

As observed by Sobel (1982), it is possible to formulate a Bellman equation

for the second moment, provided we have access to the true value function

𝑣𝜋. To see this, we expand 𝐺2
𝑡 from its definition (2.2), yielding:

𝐺2
𝑡 = (𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1)2

= 𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1 + 𝛾2

𝑡+1𝐺2
𝑡+1.

(3.8)

Then, taking the expectation, we get:

𝑣(2)
𝜋 (𝑠) = E

𝜋,𝑠
[𝐺2

𝑡 ] = E
𝜋,𝑠

[𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1 + 𝛾2

𝑡+1𝐺2
𝑡+1]

= E
𝜋,𝑠

[𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1] + E

𝜋,𝑠
[𝛾2

𝑡+1𝐺2
𝑡+1]

= E
𝜋,𝑠

[𝑅(2)
𝑡+1] + E

𝜋,𝑠
[𝛾2

𝑡+1𝑣(2)
𝜋 (𝑆𝑡+1)],

(3.9)

where we use 𝑅(2)
𝑡+1 = 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1. Observe that 𝑅(2)
𝑡+1 can be ex-

pressed as depending only the transition (𝑠, 𝑠′) using 𝑣𝜋(⋅). This is obviously
true for the 𝑅2

𝑡+1 component, and for the cross-term we have:

E
𝜋,𝑠

[𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1] = ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′) E
𝜋,𝑠,𝑠′

[𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1]

= ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑟(𝑠, 𝑠′) E
𝜋,𝑠,𝑠′

[𝐺𝑡+1]

= ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑟(𝑠, 𝑠′)𝑣𝜋(𝑠′),

(3.10)
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where we first use the law of total expectation to expand 𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1, and

note that, given the Markov property, the discount and rewards are inde-

pendent of the subsequent return conditioned on 𝑠′, allowing us to extract

them from the expectation, so we can substitute 𝑣𝜋(𝑠′) for E𝜋,𝑠,𝑠′[𝐺𝑡+1].

If we define 𝑟(2)
𝜋 ∶ 𝒮 → R via:

𝑟(2)
𝜋 (𝑠) ≝ E

𝜋
[𝑅(2)

𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)[𝑟2(𝑠, 𝑠′) + 2𝛾(𝑠′)𝑟(𝑠, 𝑠′)𝑣𝜋(𝑠′)],

(3.11)

then we can write a Bellman equation for the second moment of the return:

𝑣(2)
𝜋 (𝑠) = E

𝜋
[𝐺2

𝑡 |𝑆𝑡 = 𝑠] = 𝑟(2)
𝜋 (𝑠) + ∑

𝑠′
𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝑣(2)

𝜋 (𝑠′). (3.12)

It is then easy to express the variance of the return:

𝑢𝜋(𝑠) = E
𝜋,𝑠

[𝐺2
𝑡 ] − E

𝜋,𝑠
[𝐺𝑡] = 𝑣(2)

𝜋 (𝑠) − 𝑣2
𝜋(𝑠). (3.13)

Sobel also notes that 𝑢𝜋 itself can be expressed as a Bellman equation:

𝑚𝜋(𝑠) ≝ −𝑣2
𝜋(𝑠) + ∑

𝑠′
𝑃𝜋(𝑠, 𝑠′)(𝑟(𝑠, 𝑠′) + 𝛾(𝑠′)𝑣𝜋(𝑠′))2,

𝑢𝜋(𝑠) = 𝑚𝜋(𝑠) + ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝑢𝜋(𝑠′).
(3.14)

Later, in Section 4.3, we will show that (3.13) and (3.14) amount to the same

thing.

The preceding equations assume that the true value function is available,

which is not usually true in situations where reinforcement learning is called

for. Developing a practical learning algorithm required some additional work,

which we summarize in the next section.
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3.3.3 Learning the Second Moment of the Return

Building on the work of Sobel (1982), Tamar, Castro and Mannor (2016)

and White and White (2016) developed algorithms for estimating the second

moment of the return and therefore the return’s variance. Their approaches

posit that, rather than using 𝑣𝜋 in (3.11), we might instead use an approxim-

ate value function instead, which could learned in parallel.

For some arbitrary value function 𝑣 ∶ 𝒮 → R and discount ̄𝛾 ∶ 𝒮 → [0, 1],
we define:

�̂�(2)
𝑡+1 ≝ 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1), (3.15)

̂𝐺(2)
𝑡 = �̂�(2)

𝑡+1 + ̄𝛾𝑡+1 ̂𝐺(2)
𝑡+1 =

∞
∑
𝑛=1

�̂�(2)
𝑡+𝑛

𝑛−1
∏
𝑘=1

̄𝛾𝑡+𝑘. (3.16)

Note that ̂𝐺(2)
𝑡 is a valid return, and could be targeted by any reinforcement

learning algorithm by using 𝑅(2) instead of 𝑅 as the cumulant and ̄𝛾 in place

of 𝛾 as the discount factor. If 𝑣 = 𝑣𝜋 and ̄𝛾 = 𝛾2, then E𝜋[ ̂𝐺(2)
𝑡 ] = E𝜋[𝐺2

𝑡 ], so
the algorithm would learn to approximate the return’s second moment.

Then it would seem that learning to estimate the second moment of the

return is just a matter of learning 𝑣 ≈ 𝑣𝜋 and making the appropriate sub-

stitutions to generate this new target. However, there is a potential hazard

to this approach— note the tacit assumption in (3.16) that 𝑣(⋅) does not

change. So if we aim to learn both 𝑣 and 𝑣(2) simultaneously, E𝜋[ ̂𝐺(2)
𝑡 |𝑆𝑡 = 𝑠]

will change over time, and we have to wonder whether this will cause our

estimator to diverge.

As it turns out, using 𝑣 in place of 𝑣𝜋 can yield convergent approximation

schemes even when 𝑣 is non-constant. Tamar, Castro and Mannor (2016)

show this by expressing the problem in terms of jointly estimating 𝑣 and

𝑣(2) and demonstrating that the resulting system is convergent. They show
42



that convergence holds even under linear function approximation; with an

elegant argument based on norm equivalence they even avoid the need to

employ separate time-scales for the estimators. Their results immediately

lend themselves to variants of standard RL algorithms, such as the versions

of TD(0) and LSTD they describe in their paper.

White and White (2016) extend the framework to learning the second

moment of the λ-return, with the aim of adaptively setting λ to optimize the

bias-variance trade-off for the value estimate15. The expressions they derive

generalize earlier results significantly, accounting for variable 𝛾 and 𝜆 with

straightforward extensions to off-policy estimation. They first expand from

the definition of the λ-return:

(𝐺𝜆
𝑡 )2 = (𝑅𝑡+1 + 𝛾𝑡+1[(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1) + 𝜆𝑡+1𝐺𝜆

𝑡+1])2

= (𝑅𝜆
𝑡+1)2 + 2𝑅𝜆

𝑡+1𝛾𝑡+1𝜆𝑡+1𝐺𝜆
𝑡+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̄�(2)
𝑡+1

+𝛾2
𝑡+1𝜆2

𝑡+1(𝐺𝜆
𝑡+1)2, (3.17)

where 𝑅𝜆
𝑡+1 ≝ 𝑅𝑡+1 + 𝛾𝑡+1(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1). Taking the expectation as in

(3.9) and (3.10), we get:

E
𝜋
[�̄�(2)

𝑡+1] = E
𝜋
[(𝑅𝜆

𝑡+1)2 + 2𝑅𝜆
𝑡+1𝛾𝑡+1𝜆𝑡+1𝐺𝜆

𝑡+1]

= E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1(1 − 𝜆𝑡+1)𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆𝑡+1)2𝑣2(𝑆𝑡+1)]

+ 2E
𝜋
[𝛾𝑡+1𝜆𝑡+1𝑅𝑡+1𝑣𝜆(𝑆𝑡+1) + 𝛾2

𝑡+1𝜆𝑡+1(1 − 𝜆)𝑣𝜆(𝑆𝑡+1)𝑣(𝑆𝑡+1)],
(3.18)

where 𝑣𝜆(𝑠) ≝ E𝜋,𝑠[𝐺𝜆
𝑡 ] is the expected value of the λ-return using value

function 𝑣. If we assume that 𝑣𝜆(𝑠) ≈ 𝑣(𝑠) and make the appropriate substi-
15Recall that higher 𝜆 tends to reduce the bias for the TD(λ) fixed-point, but at the cost

of increasing the variance of the approximation target; its overall error is the combination
of the bias squared and the variance.
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tutions, we get:

E
𝜋
[�̄�(2)

𝑡+1] ≈ E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1(1 − 𝜆𝑡+1)𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆𝑡+1)2𝑣2(𝑆𝑡+1)]

+ 2E
𝜋
[𝛾𝑡+1𝜆𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1)𝛾2

𝑡+1𝜆𝑡+1(1 − 𝜆)𝑣2(𝑆𝑡+1)]

= E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆2

𝑡+1)𝑣2(𝑆𝑡+1)],
(3.19)

which allows us to define versions of (3.15) and (3.16) for the λ-return:

�̂�(2),𝜆
𝑡+1 = 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆2

𝑡+1)𝑣2(𝑆𝑡+1) (3.20)

̂𝐺(2),𝜆
𝑡 = �̂�(2),𝜆

𝑡+1 + ̄𝛾𝑡+1 ̂𝐺(2),𝜆
𝑡+1 =

∞
∑
𝑛=1

�̂�(2),𝜆
𝑡+𝑛

𝑛−1
∏
𝑘=1

̄𝛾𝑡+𝑘. (3.21)

For (3.21) we get E𝜋[ ̂𝐺(2),𝜆
𝑡 ] = E𝜋[(𝐺𝜆

𝑡 )2] if 𝑣 = 𝑣𝜆 and ̄𝛾 = 𝛾2𝜆2. In particu-

lar, with 𝜆 = 1 and ̄𝛾 = 𝛾2, we recover (3.15) and (3.16), which is to say that
̂𝐺(2),𝜆=1
𝑡 is an approximation for the Monte Carlo return’s second moment.

Note that both �̂�(2),𝜆
𝑡+1 and ̂𝐺(2),𝜆

𝑡+1 are still well-defined even if 𝑣𝜆 ≠ 𝑣, or
if ̄𝛾 ≠ 𝛾2𝜆2, although we would no longer be estimating the second moment

of the λ-return. In practice, the value function learned by an RL agent will

approximate 𝑣𝜆, so substituting 𝑣 for 𝑣𝜆 is not unreasonable. Furthermore,

since 𝑣𝜆 is usually just a proxy for 𝑣𝜋
16, then we could argue that any reas-

onably accurate value function could be used when defining (3.20).

As White and White (2016) and Sherstan et al. (2018) point out, this

gives us the ability to estimate the second moment of the λ-return using a

value function learned with a different amount of bootstrapping17, so long

as 𝑣 is “close enough” to 𝑣𝜆. Tamar, Castro and Mannor (2016) do this

implicitly, describing an algorithm which learns the value function via TD(0),

but targets the second moment of the Monte Carlo return.
16Absent function approximation, the fixed-point for 𝑣𝜆 is 𝑣𝜋.
17Or even to estimate the second moment of multiple λ-returns using a single value func-

tion.
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We provide one possible version of the algorithm (which we refer to as

VTD) in Appendix C, listed as Algorithm 3. That algorithm has three

bootstrapping hyperparameters: one for the base component, which uses

TD(λ) to learn the value function; another for the second moment estimator,

which is also TD(λ) based but with a different cumulant); and the third

hyperparameter, which is used to define the cumulant as in (3.20).

We close this subsection by noting an alternative approach for estimating

the variance in terms of the temporal difference errors, as observed by Munos

and Moore (1999) and formulated as TD-style algorithm by Sato, Kimura

and Kobayashi (2002). Using the squared TD error as a cumulant can yield

a target for the return’s variance, as we will show in Chapter 4. Tamar,

Castro and Mannor (2016) note that the issue with this approach is that it

leads to a non-linear equation for the variance, which makes analyzing the

algorithm substantially harder. In later chapters we will show how some of

these difficulties can be overcome; we provide expressions for the approxim-

ation target’s fixed-point and prove that the algorithm converges.

3.3.4 Learning Higher Moments of the Return

Building on Section 3.3.3, we note that we can in fact construct approxim-

ation targets for higher moments of the return. The formula for the 𝑛-th
power of the return is:

𝐺𝑛
𝑡 ≝ (𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1)𝑛

= 𝑅(𝑛)
𝑡+1 + 𝛾𝑛

𝑡+1𝐺𝑛
𝑡+1,

(3.22)

where

𝑅(𝑛)
𝑡+1 ≝

𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘

𝑡+1𝑅𝑛−𝑘
𝑡+1 𝐺𝑘

𝑡+1. (3.23)
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So the 𝑛-th moment of the return can be written as E[𝑅(𝑛)
𝑡+1] + 𝛾𝑛

𝑡+1 E[𝐺𝑛
𝑡+1],

which is similar to a Bellman equation, although 𝑅(𝑛)
𝑡+1 includes terms that

contain powers of 𝐺𝑡+1, so it does not quite have the desired recursive form.

However, as in Section 3.3.3, we can use estimates of 𝐺(𝑛)
𝑡+1 to produce an

approximation target suitable for online estimation. If we have an estim-

ate for the value function of the first 𝑛 − 1 moments (denoted 𝑣(𝑛)(⋅), with
𝑣(𝑛)(𝑠) ≈ E𝜋[𝐺𝑛

𝑡 |𝑆𝑡 = 𝑠], we can define a new target for the next, ̂𝐺𝑛:

̂𝐺𝑛 ≝ (
𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘𝑅𝑛−𝑘

𝑡+1 𝑣(𝑘)(𝑆𝑡+1)) + 𝛾𝑛 ̂𝐺𝑛
𝑡+1

= �̂�(𝑛)
𝑡+1 + 𝛾𝑛 ̂𝐺𝑛

𝑡+1.
(3.24)

Here, �̂�(𝑛)
𝑡+1 is given by:

�̂�(𝑛)
𝑡+1 ≝

𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘𝑅𝑛−𝑘

𝑡+1 𝑣(𝑘)(𝑆𝑡+1). (3.25)

This new return is similar to (3.22), except we use 𝑣(𝑛)(𝑆𝑡+1) in place of 𝐺𝑛
𝑡+1

in the binomial sum.

Ideally, we would have E𝜋[ ̂𝐺𝑛
𝑡 ] = E𝜋[𝐺𝑛

𝑡 ]. If our estimated value functions

𝑣(𝑘)(𝑠) = E𝜋[𝐺𝑘
𝑡 |𝑆𝑡 = 𝑠] for 𝑘 = 1, 2, … , 𝑛 − 1, then this is indeed the case.

However, because each target is defined in terms of the previous approximate

value functions, inaccuracies can be magnified and learning more than the

first few moments using this approach can be difficult.

Nonetheless, even if our value functions for the lower moments are only

approximate, then ̂𝐺𝑛
𝑡 is still well-defined, but will probably be a biased

estimate of the true 𝐺𝑛
𝑡 . Following the example set by Tamar, Castro and

Mannor (2016) and White and White (2016), we note that a stable algorithm

might still be derived. For the curious, we provide pseudocode for such

an algorithm (dubbed MOMENT-TD), given in Algorithm 4 (Page 138) and

originally reported by Bennett et al. (2019). It allows for estimating arbitrary
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moments of the return, although at this point it has not been studied in

detail18.

3.3.5 Taylor Series of a Random Variable

The Taylor series is an expansion of a function around a point. For example,

for a function 𝑔 ∶ R → R, the Taylor series about 𝑎 ∈ R is

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)
2 (𝑥 − 𝑎)2! + 𝑓 (3)

3! (𝑥 − 𝑎)3 + ⋯

=
∞

∑
𝑘=0

𝑓 (𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘,

(3.26)

where 𝑓 (𝑘)(𝑎) denotes d𝑘𝑓
d𝑥𝑘 evaluated at 𝑎.

If 𝑔 ∶ R → R is a function whose Taylor series converges to 𝑔(𝑥) when

evaluated at any 𝑎 ∈ R, then we can express the expected value of a function
of a random variable using a Taylor series:

E[𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓𝑋(𝑥)d𝑥 = ∫

∞

−∞
[

∞
∑
𝑘=0

(𝑔(𝑘)(𝑎)
𝑘! )(𝑥 − 𝑎)𝑘]𝑓𝑋(𝑥)d𝑥,

(3.27)

where 𝑓𝑋(⋅) is the probability density function for 𝑋.

We can get a more useful form if we can switch the order of summation and

integration. Let ℎ𝑘(𝑥) = (𝑔(𝑘)(𝑎)
𝑘! )(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥). If ∫∞

−∞ ∑∞
𝑘=0 |ℎ𝑘(𝑥)| < ∞,

the the Fubini-Tonelli theorem applies, and we can swap the order of the

operations:

∫
∞

−∞

∞
∑
𝑘=0

ℎ𝑘(𝑥)d𝑥 =
∞

∑
𝑘=0

∫
∞

−∞
ℎ𝑘(𝑥)d𝑥, (3.28)

18Partly this might be because of a lack of immediate usefulness, as trying to learn the
(non-central) moments of the return tends to be stymied by numerical error. Our preliminary
investigations indicate that MOMENT-TD is reasonably accurate for the first few moments,
but begins to degrade for 𝑛 > 4 or so.
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that is,
∞

∑
𝑘=0

∫
∞

−∞
(𝑔(𝑘)(𝑎)

𝑘! )(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥)d𝑥 =
∞

∑
𝑘=0

(𝑔(𝑘)(𝑎)
𝑘! ) ∫

∞

−∞
(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥)d𝑥,

(3.29)

where we can extract 𝑔(𝑘)(𝑎)
𝑘! from the integral because it is constant given 𝑎.

For our purposes, there are two natural choices for 𝑎: 𝑎 = 0, or 𝑎 = 𝜇1. If

𝑎 = 0, then:
E[𝑔(𝑋)] =

∞
∑
𝑘=0

(𝑔(𝑘)(0)
𝑘! ) ∫

∞

−∞
𝑥𝑘𝑓𝑋(𝑥)d𝑥

=
∞

∑
𝑘=0

(𝑔(𝑘)(0)
𝑘! )𝜇𝑘.

(3.30)

If 𝑎 = 𝜇1, we get:

E[𝑔(𝑋)] =
∞

∑
𝑘=0

(𝑔(𝑘)(𝜇1)
𝑘! ) ∫

∞

−∞
(𝑥 − 𝜇1)𝑘𝑓𝑋(𝑥)d𝑥

=
∞

∑
𝑘=0

(𝑔(𝑘)(𝜇1)
𝑘! )𝑐𝑘.

(3.31)

The utility of this approach is somewhat blunted by the fact that it requires

𝑔(⋅) to have an infinite radius of convergence, and the further requirement

that 𝑋 must have finite moments19. For stochastic approximation, it is more

concerning that we do not typically have access to the true moments, meaning

that even if 𝑋 and 𝑔(⋅) are well-behaved, our estimate for E[𝑔(𝑋)] from the

Taylor expansion may be wrong if our moment estimates are off.

Still, if we have a reasonable estimate for the mean and variance of the

return, then this gives us a quick way to approximate the expected value of

𝑔(𝐺𝑡). Noting that 𝑐1 = E[𝑋 − E[𝑋]] = 0, we can use:

E𝜋,𝑠[𝑔(𝐺𝑡)] ≈
∞

∑
𝑘=0

(𝑔(𝑘)(𝑣(𝑠))
𝑘! )𝑐𝑘(𝑠) = 𝑔(𝑣(𝑠)) + ��������:0

𝑔′(𝑣(𝑠))𝑐1(𝑠) + 1
2𝑔″(𝑣(𝑠))𝑢(𝑠) + ⋯

≈ 𝑔(𝑣(𝑠)) + 1
2𝑔″(𝑣(𝑠))𝑢(𝑠),

(3.32)
19This is implicit in the requirement that ∫ ∑ |ℎ𝑛(𝑥)|d𝑥 < ∞.
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which is straightforward to compute and obviates the need to express 𝑔(𝐺𝑡)
as a return.

3.3.6 Parametric Approximation

If we have the first 𝑛 moments of a random variable, we might approxim-

ate it by some parameterized distribution. We can then estimate the the

expected value of a function of that random variable using the parametric

approximation as a stand-in.

Suppose we wanted to estimate E[𝑔(𝑋)] for some function 𝑔 ∶ R → R and 𝑋
a random variable. The precise distribution for 𝑋 might be unknown, but it

might be similar enough to another distribution, allowing us to approximate

𝑋 by a random variable, say �̂�, from the known distribution. Then:

E[𝑔(𝑋)] ≈ E[𝑔(�̂�)] = ∫
∞

−∞
𝑝�̂�(𝑥)𝑔(𝑥)d𝑥. (3.33)

For example, given the mean and variance of 𝑋 (𝜇 and 𝑐2, respectively),

we might approximate 𝑋 as normally distributed, with 𝑋 ≈ �̂� ∼ 𝒩(𝜇, 𝑐2).
We could then estimate

E[𝑔(𝑋)] ≈ 1
√2𝜋𝑐2

∫
∞

−∞
exp{−1

2
(𝑥 − 𝜇)2

𝑐2
} 𝑔(𝑥)d𝑥,

which is relatively straightforward to calculate.

The validity of this approach is dependent on the distribution used for

approximation, and in practice also on the accuracy of the values used in

the parameterization. If we have reason to believe that 𝑋 is distributed

in a particular way, then it is possible to achieve a close approximation

with relatively scant information. Conveniently, many distributions can be

parameterized in terms of their moments (like the normal distribution used

in the example above).
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On the other hand, choosing a distribution for the approximation entails

greater complexity. In particular, part of the allure of TD methods is that

they are “model-free”, so by assuming that the returns have a certain form

we are implicitly imposing a model on the environment.

3.4 Distributional Reinforcement Learning

Distributional Reinforcement Learning is a relatively recent development in

RL, which seeks to expand what can be learned and approximated beyond

the expected return by considering the distribution of returns. In exchange

for the increased complexity this entails, it has a number of advantages, such

as allowing us to better characterize the possible results of a given policy,

and it seems to interact beneficially with function approximation using deep

neural networks.

Our interest in this topic comes mainly from the fact that estimating the

variance of the return is straightforward if we have an approximation of

the return’s distribution. Although estimating variance is not their primary

use, distributional RL algorithms exhibit state-of-the-art performance on

various benchmarks, so we would be remiss if we did not consider them in

our comparisons.

The distributional RL algorithm we focus on is the C51 algorithm20 intro-

duced by Bellemare, Dabney and Munos (2017). The paper had a substan-

tial impact because it suggested that learning the distribution of the return

could lead to better performance, particularly in control tasks, and provided
20Because it is a categorical learning algorithm, and the original implementation by Belle-

mare, Dabney and Munos (2017) suggested a support of 51 atoms for the distribution
approximation. Some recent papers also refer to it as CDRL, for “categorical distributional
reinforcement learning”. We will go along with the original nomenclature, because CDRL
seems more apt to describe a class of methods, rather than the particular algorithm we
investigate.
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evidence for that claim in the form of state-of-the-art results on the Arcade

Learning Environment testbed.

We restrict ourselves to studying C51 instead of performing a more com-

plete survey of distributional methods, in part because it was the original

distributional algorithm21, but also due to concerns about scope and applic-

ability. More recent algorithms might perform better than C51 on various

benchmarks, but some of them are not quite “distributional” in the sense of

learning a proper probability distribution22. Since we are interested in es-

timating the variance of the return, we prefer to deal with C51, which has a

straightforward probabilistic interpretation, and let it serve as an exemplar

of distributional methods.

3.4.1 Mathematical Framework

We provide a summary of distributional RL, referring heavily to Lyle, Belle-

mare and Castro (2019) who provide a good overview of the formalism. The

notation might be somewhat jarring for those mostly familiar with traditional

reinforcement learning, but this excursion is brief and mostly self-contained

so hopefully the effect is not excessively confusing.

We use “ D=” to express distributional equality, mainly when drawing at-

tention to the fact that the equation in question is in terms of distributions

rather than other quantities. Denoting by 𝑍𝜋 ∶ 𝒮 → Dist(R) the return dis-

tribution function (see Bellemare, Dabney and Munos 2017) under policy 𝜋,
21As noted by Bellemare et al., other work has considered reinforcement learning in terms

of distributions of the return, but usually for some secondary purpose, rather than as a task
in itself.

22For example, the S51 algorithm introduced by Bellemare, Le Roux et al. (2019) is still
referred to as a distributional algorithm, but the distribution it learns is not necessarily a
probability distribution. S51 can assign negative weight to possible values of the return, and
the weights do not necessarily sum to one, so we cannot interpret the weights as correspond-
ing to classical probabilities.
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defined as:

𝑍𝜋(𝑠) D=
∞

∑
𝑡=0

𝛾𝑡𝑅(𝑆𝑡) 𝑆0 = 𝑠, 𝑆𝑡+1 ∼ 𝑃𝜋(⋅|𝑆𝑡), (3.34)

where 𝑅(𝑠) is the distribution of rewards given state 𝑠.

The distributional version of the Bellman equation is:

𝑍𝜋(𝑠) D= 𝑅(𝑠) + 𝛾𝑍𝜋(𝑆′), 𝑆′ ∼ 𝑃𝜋(⋅|𝑠) (3.35)

with 𝑆′ a random variable corresponding to the subsequent state23. This in

turn leads to the corresponding distributional Bellman operator:

𝒯𝜋𝑍𝜋(𝑠) D= 𝑅(𝑠) + 𝛾𝑃𝜋𝑍𝜋(𝑆). (3.36)

If we were working directly with the distributions, then the fact that the dis-

tributional Bellman operator (3.36) is a contraction (Bellemare, Dabney and

Munos 2017; Rowland et al. 2018) implies that it has a fixed-point, which

could be found by iteration. Sadly, this is not a situation we frequently

encounter— typically, we are unable to represent arbitrary distributions ex-

actly.

To make this an actionable problem, we have to have some way of approx-

imating arbitrary probability distributions. One method of approximating a

distribution (and the one used by C51) is as a categorical distribution, which

is to say as a finite set of points which correspond to the possible values the

approximation can represent. To make this precise we first have to describe

some additional concepts.

The Dirac delta distribution, sometimes referred to as the Dirac delta func-

tion24, can be formulated as the derivative of the Heaviside step function:
23We omit state-dependent discounting primarily because including it is superfluous in

our limited analysis, and to define it properly would complicate the explanation to no real
benefit.

24Although some would argue that this terminology is incorrect, as depending on one’s
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𝛿(𝑥) ≝ d
d𝑥𝐻(𝑥). (3.37)

There is some unfortunate overlap in notation between the Dirac delta and

the temporal-difference error, but for the most part they are used in different

contexts so we defer to convention by using 𝛿 for both.

It can be thought of as a distribution sharply peaked at a point,

𝛿(𝑥) =
⎧{
⎨{⎩

+∞ if 𝑥 = 0

0 if 𝑥 ≠ 0
(3.38)

and normalized such that

∫
∞

−∞
𝛿(𝑥)d𝑥 = 1. (3.39)

We can now define the categorical distributions we will use to approximate

the distribution of the return. Such a distribution can be formalized as a

weighted combination of (fixed) Dirac deltas. Let 𝑧1 < 𝑧2 < ⋯ 𝑧𝐾 for some

𝐾 ≥ 1, with 𝑧𝑖 ∈ R for 𝑖 = 1, 2, … , 𝐾. Then we denote the set of possible

distributions with support 𝐳 as 𝒵, defined by:

𝒵 = {
𝐾

∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖) ∶ 𝑝𝑖 ≥ 0,
𝐾

∑
𝑖=1

𝑝𝑖 = 1} . (3.40)

We might write the probability density function for such a distribution as:

𝑓𝑍(𝑥) =
𝐾

∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖). (3.41)

Computing the expected value is straightforward:

E[𝑍] = ∫
∞

−∞
𝑥𝑓𝑍(𝑥)d𝑥 = ∫

∞

−∞
𝑥

𝐾
∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖)d𝑥 =
𝐾

∑
𝑖=1

𝑧𝑖𝑝𝑖, (3.42)

where we use the fact that ∫∞
−∞ 𝛿(𝑥 − 𝑦)𝑓(𝑥)d𝑥 = 𝑓(𝑦). We get something

definition it may not be a proper function.
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similar for variance, letting ̄𝑧 = E[𝑍], we find

V[𝑍] = ∫
∞

−∞
(𝑥 − ̄𝑧)2𝑓𝑍(𝑥)d𝑥 =

𝐾
∑
𝑖=1

(𝑧𝑖 − ̄𝑧)2𝑝𝑖. (3.43)

In fact, we can compute the expected value of arbitrary functions of 𝑍, al-
though for our purposes the usefulness of this approach depends on how

accurately it approximates 𝑍𝜋.

3.4.2 The C51 Algorithm

The categorical representation is essentially equivalent to the tabular setting

discussed previously— we are assuming that we can use a separate distribu-

tion for each state. Typically, we have to introduce some form of function

approximation for this method to be practical. Although earlier work has

mainly used deep neural nets for this purpose, it is entirely possible to run

C51 using linear function approximation.

Let ̂𝑍 ∶ 𝒮 → Dist(R) denote the parameterized approximation for the

return’s distribution. Let 𝐱(⋅) be a function 𝐱 ∶ 𝒮 → R𝑑 that maps states to

features, and let 𝐖𝐾×𝑑 be C51’s weight matrix. Then we use the softmax

function to assign probabilities to the possible values of 𝐳 based on 𝐱(𝑠), via

𝐩(𝑠) = 𝑒𝐖𝐱(𝑠)

∥𝑒𝐖𝐱(𝑠)∥1
, (3.44)

with the interpretation that ̂𝑍(𝑠) takes on value 𝑧𝑖 with probability 𝑝𝑖(𝑠),
the 𝑖-th entry of 𝐩(𝑠).

The use of the softmax function guarantees that the probabilities are pos-

itive (due to the exponential), and that they sum to one (because of its

inherent normalization). Alternative parameterizations that do not enforce

these guarantees may still result in a functioning algorithm25, but not one
25In the sense that they arrive at a good control policy or value function.
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that can be used for estimating functions of the return, so they are less useful

for estimating functions of the return.

Now that we have a means of representing arbitrary distributions in an

approximate fashion, we turn to the question of learning the distribution of

the return via reinforcement learning.

This is actually a fairly difficult problem. There are some complications

from using a categorical approximation for the distribution, and we will also

be using function approximation, further muddying the waters. It gets pos-

itively murky when we consider that rather than having direct access to the

distribution of 𝑅 and 𝑆′ (as in (3.35)), we tend to only learn through samples

of the form (𝑠, 𝑎, 𝑟, 𝑠′). All this before we even consider what loss function

to use or update rule to apply!

To explain how these issues were resolved would essentially recapitulate Belle-

mare, Dabney and Munos (2017), so instead we provide an outline of their

approach.

1. Given a transition (𝑠, 𝑎, 𝑟, 𝑠′), compute ̂𝑍(𝑠) and ̂𝑍(𝑠′),

2. Create a pseudo-distribution �̂� ̂𝑍 = 𝑟 + 𝛾 ̂𝑍(𝑠′),

3. Project the probability masses from �̂� ̂𝑍 onto the support 𝐳 using the

Cramér projection, yielding Π𝐶�̂� ̂𝑍,

4. Update the parameters of ̂𝑍 using the gradient of the cross-entropy loss

between Π𝐶�̂� ̂𝑍 and ̂𝑍(𝑠).

The process of computing Π𝐶�̂� ̂𝑍 is also shown in Fig. 3.2.
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Z′ = PπZ Rπ and γZ′ TπZ ΠCTπZ

Figure 3.2: The projected distributional Bellman operator can be computed by taking
an estimate of the next state’s return distribution (𝑃𝜋𝑍), applying the discount 𝛾 to it
and combining it with the reward to get 𝒯𝜋𝑍, which is then projected onto the support
𝐳 to produce Π𝐶𝒯𝑍.

In contrast to other methods, there does not seem to be a closed-form

expression for the fixed-point of C5126; however, it is interesting to note that

in the LFA case its update equation resembles TD(0) applied to distributions.

Pseudocode for the C51 algorithm under linear function approximation is

given in Algorithm 5, and a derivation of the update rule is provided in

Appendix B.

26However, we can generate a close approximation for its fixed-point through iterative
methods.
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CHAPTER 4

THE 𝛿2-RETURN AND VARiANCE

In this chapter we examine a method for learning the variance of the return

directly, in contrast to the raw moment-based estimation used by VTD1.

We show how the squared temporal difference errors can be used as a

cumulant2 with a well-defined return. If value function is exact (i.e., 𝑣 = 𝑣𝜋),

then the 𝛿2-return corresponds to E𝜋[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2], the variance of the

return, and is in fact equivalent to the raw moment based approaches, albeit

with more favorable numerical properties. We also discuss the more typical

case where we do not have access to the true value function. In Section 4.5,

we describe DVTD, an algorithm that targets the 𝛿2-return and provide an

argument for its convergence..

4.1 Variance and the 𝛿2-return

In analogy with the value function, which maps states to their expected

return, we might also imagine a variance function:

𝑢𝜋(𝑠) = E
𝜋

[(𝐺𝑡 − 𝑣𝜋(𝑠))2|𝑆𝑡 = 𝑠] = E
𝜋

[𝐺2
𝑡 |𝑆𝑡 = 𝑠]

⏟⏟⏟⏟⏟
𝑣(2)

𝜋 (𝑠)

− E
𝜋

[𝐺𝑡|𝑆𝑡 = 𝑠]2
⏟⏟⏟⏟⏟⏟⏟

𝑣2𝜋(𝑠)

.
(4.1)

Earlier, in Section 3.3.3, we discussed how the second moment can be ex-

pressed as a Bellman equation, which in turn allows us to compute the vari-
1See Section 3.3, particularly Section 3.3.3.
2i.e., a reward-like signal.
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ance as 𝑢𝜋(𝑠) = 𝑣(2)
𝜋 (𝑠) − 𝑣2

𝜋(𝑠). However, the form of 𝐺𝑡 − 𝑣𝜋(𝑠) suggests an
alternative approach:

𝑢𝜋(𝑠) = E
𝜋
[(𝐺𝑡 − E[𝐺𝑡])2|𝑆𝑡 = 𝑠] = E

𝜋,𝑠
[(𝐺𝑡 − 𝑣𝜋(𝑠))2]

= E
𝜋,𝑠

[(𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1 − 𝑣𝜋(𝑠))2]

= E
𝜋,𝑠

[(𝑅𝑡+1 + 𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑠) + 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 + 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 )2 + 2𝛿𝜋

𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)) + 𝛾2
𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 )2] + 2 E

𝜋,𝑠
[𝛿𝜋

𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] + E
𝜋,𝑠

[𝛾2
𝑡+1𝑢𝜋(𝑆𝑡+1)],

(4.2)

where we use the superscript 𝜋 in 𝛿𝜋
𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡) to draw

attention to the fact that the value function used is the true value function,

𝑣𝜋(⋅).

As with the expansion for the return’s second moment (see Section 3.3.2),

the cross-term prevents us from immediately identifying (4.2) as a Bellman

equation. But as it turns out, the cross-term 2𝛿𝜋
𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)) is

zero in expectation, thus:

𝑢𝜋(𝑠) = E
𝜋
[𝛿2

𝑡 + 𝛾2
𝑡+1𝑢𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]. (4.3)

We can actually state a more general result that applies to the λ-return in

addition to the Monte Carlo return:

Theorem 4.1 (Variance of the λ-return from TD Errors)

Let 𝐺𝜆,𝜋
𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋

𝑡+1 + (1 − 𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) be the λ-return
given the value function 𝑣(𝑠) = 𝑣𝜋(𝑠) = E𝜋[𝐺𝑡], and let 𝛿𝜋

𝑡 = 𝑅𝑡+1 +
𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡).
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Then:

𝑢𝜆
𝜋(𝑠) ≝ V

𝜋
[𝐺𝜆,𝜋

𝑡 |𝑆𝑡 = 𝑠] = E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= 𝛿2
𝜋(𝑠) + ∑

𝑠′
𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝜆2(𝑠′)𝑢𝜆

𝜋(𝑠′),
(4.4)

where 𝛿2
𝜋(𝑠) = E𝜋[(𝛿𝜋

𝑡 )2|𝑆𝑡 = 𝑠].

Note that when 𝜆(𝑠) = 1 for all states, the λ-return is equivalent to the

Monte Carlo return, and (4.4) reduces to (4.3).

Before proving Theorem 4.1, we first justify our claim about the cross-term.

Lemma 4.2

Let {𝐶𝑡}𝑡=0 and {𝐵𝑡}𝑡=0 be sequences of random variables, with:

∘ 𝐶𝑡 = 𝑐(𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝑆𝑡+1) + 𝜖𝑡, where 𝑐 ∶ 𝒮 × 𝒜 × ℛ × 𝒮 → R is a

bounded function mapping transitions to real numbers, and {𝜖𝑡} is a

noise sequence with mean zero,

∘ 𝐵𝑡 = 𝐺𝜆
𝑡 − 𝑣𝜋(𝑆𝑡).

Then:

E
𝜋
[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = 0. (4.5)

PROOF (LEMMA 4.2):

We prove this by simply expanding the expectation, noting that if we

condition on the transition (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1), then 𝐶𝑡 and 𝐵𝑡+1 are con-

ditionally independent, with E𝜋,𝑠[𝐵𝑡] = E𝜋,𝑠[𝐺𝜆
𝑡+1 − 𝑣𝜋(𝑆𝑡+1)] = 0.
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First, observe that:

E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎)E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡=𝑠,𝐴𝑡=𝑎,𝑅𝑡+1=𝑟,𝑆𝑡+1=𝑠′].

(4.6)

Given (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1), then 𝐶𝑡 = 𝑐(𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) + 𝜖𝑡 is effectively

constant, and can be taken out of the expectation:

E
𝜋,𝑠,𝑎,𝑟,𝑠′

[(𝑐(𝑠, 𝑎, 𝑟, 𝑠′) + 𝜖𝑡)𝐵𝑡+1] = E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝑐(𝑠, 𝑎, 𝑟, 𝑠′) + 𝜖𝑡] E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝐵𝑡+1]

= 𝑐(𝑠, 𝑎, 𝑟, 𝑠′) E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝐵𝑡+1].
(4.7)

From the Markov property, we have that E𝜋[𝐵𝑡+1|𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1] =

E𝜋[𝐵𝑡+1|𝑆𝑡+1]; furthermore, since 𝑣𝜋(𝑠) = E𝜋[𝐺𝜆
𝑡 |𝑆𝑡 = 𝑠] by definition,

we have:

E
𝜋
[𝐵𝑡+1|𝑆𝑡+1] = E

𝜋
[𝐺𝜆

𝑡+1 − 𝑣𝜋(𝑆𝑡+1)|𝑆𝑡+1] = 0.

Thus:

E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑐(𝑠, 𝑎, 𝑟, 𝑠′) × 0 = 0. (4.8)

Since this holds for arbitrary 𝑆𝑡, the claim follows. ■

With Lemma 4.2 in hand, proving Theorem 4.1 is straightforward:

PROOF (THEOREM 4.1):

We asserted that:

𝑢𝜋(𝑠) ≝ V
𝜋
[𝐺𝜆,𝜋

𝑡 |𝑆𝑡 = 𝑠] = E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2],
(4.9)

where 𝐺𝜆,𝜋
𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋

𝑡+1 + (1 − 𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) and 𝛿𝜋
𝑡 = 𝑅𝑡+1 +

𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡).

60



To show this, we expand from the definition:

V
𝜋
[𝐺𝜆,𝜋

𝑡 ] = E
𝜋
[(𝐺𝜆,𝜋

𝑡 − E[𝐺𝜆,𝜋
𝑡 ])2] = E

𝜋
[(𝐺𝜆,𝜋

𝑡 − 𝑣𝜋(𝑆𝑡))2]

= E
𝜋

[(𝑅𝑡+1 + 𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋
𝑡+1 + (1 − 𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) − 𝑣𝜋(𝑆𝑡))2]

= E
𝜋

[(𝑅𝑡+1 + 𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡) + 𝛾𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋

[(𝛿𝜋
𝑡 + 𝛾𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋

[(𝛿𝜋
𝑡 )2] + 2E

𝜋
[𝛿𝑡𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] + E

𝜋
[𝛾2

𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2].
(4.10)

Applying Lemma 4.2 by identifying 𝐶𝑡 with 𝛾𝑡+1𝛿𝑡, we note that

E𝜋 [𝛿𝑡𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] = 0. Therefore we have:

V
𝜋
[𝐺𝜆,𝜋

𝑡 ] = E
𝜋

[(𝛿𝜋
𝑡 )2] + E

𝜋
[𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2],
(4.11)

as claimed. ■

4.2 Cumulants and Approximation Targets

Manipulating some of the quantities we work with becomes substantially

easier if they are expressed in terms of vectors and matrices (see Section 2.2).

We describe the notation we will be using, then show how it can be used for

the cumulants and their associated returns that we study.

4.2.1 Defining Cumulants

The Hadamard product, also known as the Schur product or entrywise product,

is a particularly useful tool for expressions involving transition probabilities.

For 𝐀 and 𝐁 both 𝑚×𝑛 matrices, their Hadamard product is denoted 𝐀∘𝐁
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and defined:

[𝐀 ∘ 𝐁]𝑖𝑗 ≝ [𝐀]𝑖𝑗[𝐁]𝑖𝑗 = 𝐴𝑖𝑗𝐵𝑖𝑗. (4.12)

By convention, we denote the elementwise power of a matrix as 𝐀(2) =
𝐀 ∘ 𝐀. When denoting the elementwise power of vectors, we use the expo-

nent without adornment, so 𝐯2 = [𝑣2
1, 𝑣2

2, … , 𝑣2
𝑛]⊤, so as to reserve the paren-

thesized version for denoting things like the second moment of the return as

𝐯(2)
𝜋 .

Using the Hadamard product, the expected reward 𝐫𝜋 is:

[𝐫𝜋]𝑖 = E
𝜋
[𝑅𝑡+1|𝑆𝑡 = 𝑖] = ∑

𝑗
𝑝𝜋(𝑖, 𝑗)𝑟(𝑖, 𝑗) = ∑

𝑗
𝑃𝑖𝑗𝑅𝑖𝑗

= [𝐏𝜋 ∘ 𝐑]𝟏,
(4.13)

where 𝟏 = [1, 1, … , 1]⊤ is the vector of ones, and

[𝐏𝜋]𝑖𝑗 ≝ 𝑝𝜋(𝑖, 𝑗),

[𝐑𝜋]𝑖𝑗 ≝ E
𝜋
[𝑅𝑡+1|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗].

(4.14)

That is, 𝐏𝜋 is the transition matrix for policy 𝜋, and 𝐑𝜋 is the reward

matrix3 for that same policy. For remainder of this chapter, we will omit the

subscript 𝜋 on these matrices, since we only consider the on-policy case.

A slightly more complicated example would be the TD error matrix. If we

denote by Δ𝑖𝑗 the expected TD error for a transition from state 𝑖 to state 𝑗,
we observe:

Δ𝑖𝑗 = E
𝜋
[𝛿𝑡|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗]

= E
𝜋
[𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡)|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗],

(4.15)

3Note that we tacitly assume that the reward function doesn’t depend on the action
selected, e.g. 𝑟(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑠′). This simplifies the notation without really affecting the
results. We could incorporate action dependence, for example by using tensors or higher
order arrays, but this tends towards complication without providing additional insight.
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so the matrix 𝚫 can be written:

𝚫 ≝ 𝐑 + 𝟏 ⊗ (Γ𝐯) − 𝐯 ⊗ 𝟏

= 𝐑 + 𝟏𝐯⊤
𝛾 − 𝐯𝟏⊤,

(4.16)

where we define 𝐯𝛾 ≝ 𝚪𝐯, and express the vector outer product using the

transpose4. The expected TD error vector is then:

𝛅 = (𝐏 ∘ 𝚫)𝟏 = (𝐏 ∘ 𝐑)𝟏 + (𝐏 ∘ (𝟏𝐯⊤
𝛾 ))𝟏 + (𝐏 ∘ (𝐯𝟏⊤))𝟏

= 𝐫 + 𝐏𝚪𝐯 − 𝐯.
(4.17)

The last line follows from the identity (𝐀 ∘ 𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲 ∘ 𝐳)). When

𝐯 = 𝐯𝜋 = 𝐫 + 𝐏𝚪𝐯𝜋, it’s clear that 𝛅𝜋 = 𝟎, as expected.

The advantages of this notation become clear when expressing the cumu-

lants and targets for the moments of the return. Here, we focus on expressions

for the Monte Carlo return’s variance or second moment, although this ap-

proach could be modified to yield formulas for the λ-return or the return’s

higher moments.

The expected squared TD error in state 𝑖 is:

𝛿2(𝑖) ≝ E
𝜋
[𝛿2

𝑡 |𝑆𝑡 = 𝑖] = ∑
𝑗

𝑃𝑖𝑗Δ2
𝑖𝑗. (4.18)

Therefore we define:

𝛅(2) ≝ [𝐏 ∘ 𝚫(2)]𝟏. (4.19)

Similarly, Sobel’s variance cumulant (3.14) is, in vector form:

𝐦 ≝ −𝐯2 + 𝐏 ∘ [𝐑 + 𝟏 ⊗ (𝚪𝐯)](2)𝟏. (4.20)

4Recall that, for some vectors 𝐚 and 𝐛 we have 𝐚 ⊗ 𝐛 = 𝐚𝐛⊤ and [𝐚𝐛⊤]𝑖𝑗 = 𝑎𝑖𝑏𝑗. In
particular, we have [𝟏𝐚⊤]𝑖,𝑗 = 𝑎𝑗 and [𝐚𝟏⊤]𝑖,𝑗 = 𝑎𝑖, and .
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We write the cumulant for the second moment (3.15) via:

𝐫(2) ≝ [(𝐏 ∘ 𝐑(2)) + 2(𝐏 ∘ 𝐑 ∘ (Γ𝐯)𝟏⊤)]𝟏. (4.21)

Its expected return (c.f . (3.16) is then:

𝐯(2) ≝ (𝐈 − 𝐏𝚪2)−1𝐫(2). (4.22)

The variance targets can therefore be expressed as:

𝐮SM ≝ 𝐯(2) − 𝐯2,

𝐮SOB ≝ (𝐈 − 𝐏𝚪2)−1𝐦,

𝐮DV ≝ (𝐈 − 𝐏𝚪2)−1𝛅(2),

(4.23)

noting that if 𝐈 − 𝐏𝚪 is invertible, then so is 𝐈 − 𝐏𝚪𝑛 for 𝑛 ≥ 1.

4.3 Equivalence of Expressions for the Vari-

ance

For derived quantities where 𝐯 = 𝐯𝜋, we use the subscript “𝜋”, e.g. 𝚫𝜋 =
𝐫+𝐏𝚪𝐯𝜋 −𝐯𝜋 and 𝛅(2)

𝜋 = [(𝐏∘𝚫(2)
𝜋 )]𝟏. This might seem problematic for the

variance of the return, since we have three candidate expressions— which

one to use for 𝐮𝜋? In fact, they are equivalent when the value function is

unbiased, as we will show presently.

Theorem 4.3

Let 𝐯 = 𝐯𝜋. Then the expressions from (4.23) are equivalent; furthermore

they correspond to the variance of the Monte Carlo return. That is,

𝐮𝜋 = (𝐈 − 𝐏𝚪2)−1𝛅(2)
𝜋⏟⏟⏟⏟⏟⏟⏟

𝑢DV

= (𝐈 − 𝐏𝚪2)−1𝐦𝜋⏟⏟⏟⏟⏟⏟⏟
𝑢SOB

= (𝐈 − 𝐏𝚪2)−1𝐫(2)
𝜋 − 𝐯2𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢SM

,

(4.24)
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where

𝑢𝜋(𝑖) = E
𝜋
[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2|𝑆𝑡 = 𝑖]. (4.25)

As part of proving Theorem 4.3, we first establish some results that hold

in general, that is, even when 𝐯 ≠ 𝐯𝜋.

Lemma 4.4 Let 𝐦 and 𝐫(2) be defined as in (4.20) and (4.21) respectively.

Then:

𝐦 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2. (4.26)

PROOF (PROOF OF LEMMA 4.4):

We begin by simplifying 𝐫(2) a bit:

𝐫(2) = [(𝐏 ∘ 𝐑(2)) + 2𝐏 ∘ 𝐑 ∘ (𝐯𝛾𝟏⊤)]𝟏

= [𝐏 ∘ 𝐑(2)]𝟏 + 2[𝟏 ∘ (𝐏 ∘ 𝐑(𝟏 ∘ 𝐯𝛾))]

= (𝐏 ∘ 𝐑(2))𝟏 + 2(𝐏 ∘ 𝐑)𝚪𝐯,

(4.27)

where we use the identity (𝐀∘𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲∘𝐳)). Next, we expand 𝐦:

𝐦 = −𝐯2 + 𝐏 ∘ [𝐑 + 𝟏𝐯⊤
𝛾 ](2)𝟏

= −𝐯2 + [𝐏 ∘ 𝐑(2)]𝟏 + 2[𝐏 ∘ 𝐑 ∘ (𝟏𝐯⊤𝛾 ))]𝟏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐫(2)

+[𝐏 ∘ (𝟏𝐯⊤
𝛾 )(2)]𝟏

= 𝐫(2) − 𝐯2 + [𝐏 ∘ 𝟏(𝐯2
𝛾)⊤]𝟏

= 𝐫(2) − 𝐯2 + 𝐏𝐯2
𝛾,

(4.28)

in which the third line follows from another identity, (𝐚𝐜⊤) ∘ (𝐛𝐝⊤) =
(𝐚 ∘ 𝐛)(𝐜 ∘ 𝐝)⊤. Now, since 𝐯2

𝛾 = (𝚪𝐯)2 = 𝚪2𝐯2 since 𝚪 is diagonal, we then

have:

𝐦 = 𝐫(2) − 𝐯2 + 𝐏𝚪2𝐯2 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2 (4.29)
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as claimed. ■

We can also write the DV cumulant in terms of the 𝐦 or 𝐫(2) cumulants:

Lemma 4.5 Let 𝐦, 𝐫(2), and 𝛅(2) be defined as in (4.20), (4.21), and (4.19)

respectively. Then:

𝛅(2) = 𝐦 − 2𝐯 ∘ 𝛅 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2 − 𝐯 ∘ 𝛅. (4.30)

PROOF (PROOF OF LEMMA 4.5):

We start with the definition of 𝛅(2):

𝛅(2) = [𝐏 ∘ 𝚫(2)]𝟏

= [𝐏 ∘ (𝐑 + 𝟏𝐯⊤
𝛾 − 𝐯𝟏⊤)(2)]𝟏

= [𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 )(2) + (𝐯𝟏⊤)(2) − 2(𝐑 + 𝟏𝐯⊤

𝛾 ) ∘ (𝐯𝟏⊤))]𝟏.

(4.31)

We can extract 𝐦 from the above by recognizing

[𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 )(2))]𝟏 = 𝐦 + 𝐯2. (4.32)

Using (𝐀 ∘ 𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲 ∘ 𝐳)) we get:

[𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 ) ∘ (𝐯𝟏⊤))]𝟏 = 𝐯 ∘ (𝐏 ∘ (𝐑 + 𝟏𝐯⊤

𝛾 ))𝟏. (4.33)

Furthermore, since [𝐏 ∘ (𝐯𝟏⊤)(2)]𝟏 = 𝐯2 we have

𝛅(2) = 𝐦 + 2𝐯2 − 2𝐯 ∘ (𝐏 ∘ (𝐑 + 𝟏𝐯⊤
𝛾 ))𝟏

= 𝐦 − 2𝐯 ∘ (𝐏 ∘ 𝚫)𝟏

= 𝐦 − 2𝐯 ∘ 𝛅,

(4.34)

thus proving the claim ■

The preceding results make Theorem 4.3 immediate:
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PROOF (PROOF OF THEOREM 4.3):

From Lemma 4.4 we have

𝐦𝜋 = 𝐫(2)
𝜋 − (𝐈 − 𝐏𝚪2)𝐯2

𝜋, (4.35)

hence:

(𝐈 − 𝐏𝚪2)−1𝐦𝜋 = (𝐈 − 𝐏𝚪2)−1𝐫(2)
𝜋 − (𝐈 − 𝐏𝚪2)−1(𝐈 − 𝐏𝚪2)𝐯2

𝜋

= 𝐯(2)
𝜋 − 𝐯2

𝜋,
(4.36)

therefore the Sobel and SM expressions are equivalent when 𝐯 = 𝐯𝜋.

For the DV target, we observe that 𝛅𝜋 = 𝟎, so from Lemma 4.5 we have

𝛅(2)
𝜋 = 𝐦𝜋 − 2𝐯𝜋 ∘ 𝛅𝜋 = 𝐦𝜋, (4.37)

which implies that the DV and Sobel expressions for 𝐮𝜋 are equivalent, and

therefore that the SM and DV expressions are also equivalent. ■

4.4 What if the Value Function is Biased?

When 𝐯 ≠ 𝐯𝜋, none of the targets corresponds to the true variance5. If the

value function is reasonably close to 𝐯𝜋, then our approximations for the

variance can still be useful6. However, if the value function is biased, we

have to grapple with the question: what does 𝐮DV represent?

Some insight can be gained by asking a different question: can we construct

a return that expresses the error of our approximate value function? It is

easy to show that the difference between our value function and the return
5In all cases, the difference between 𝐮𝜋 and �̂� will be proportional to ‖𝐯𝜋 − 𝐯‖2, as one

might guess from the equations.
6For many applications, such as stepsize adaptation or other kinds of meta-learning

(see White and White (2016), particularly the experiments), so long as the variance estimate
is broadly correct it can be an improvement over having no estimate at all.
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corresponds to the discounted sum of TD errors7. Let ℰ𝑡 ≝ 𝐺𝑡 − 𝑣(𝑆𝑡), and
note that it can be expressed recursively:

ℰ𝑡 = 𝐺𝑡 − 𝑣(𝑆𝑡) = 𝑅𝑡+1 + 𝛾𝐺𝑡+1 − 𝑣(𝑆𝑡) + 𝛾(𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡+1))

= 𝛿𝑡 + 𝛾ℰ𝑡+1 =
∞

∑
𝑛=0

𝛾𝑛𝛿𝑡+𝑛.
(4.38)

Taking the expectation, we see:

E
𝜋

[ℰ𝑡|𝑆𝑡 = 𝑠] = E
𝜋,𝑠

[𝐺𝑡] − E
𝜋,𝑠

[𝑣(𝑆𝑡)] = 𝑣𝜋(𝑠) − 𝑣(𝑠). (4.39)

So the expected value of ℰ𝑡 corresponds to the bias, but perhaps more inter-

estingly, the second moment of ℰ𝑡 is equivalent to the Mean Squared Return

Error8:

RE( ̂𝑣) ≝ E
𝜋
[(𝐺𝑡 − ̂𝑣(𝑠))2] = ∑

𝑠∈𝒮
𝑑𝜋(𝑠)E[(𝐺𝑡 − ̂𝑣(𝑠))2|𝑆𝑡 = 𝑠]. (4.40)

with the obvious equivalence E𝜋[ℰ2
𝑡 ] = RE(𝑣).

While we can in fact construct a return for a value function’s bias, or even

its return error, it turns out to not be congenial to approximation. Consider

the case where we attempt to estimate the bias using the same features as

for learning the value function. For TD(λ) algorithms under linear function

approximation, the fixed-point for the weights is:

𝛉∗ = [𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐗]𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1𝐫. (2.21)

Note that 𝐫 = (𝐈 − 𝐏𝚪)𝐯𝜋, so we can write:

𝐯𝛉 = 𝐗𝛉∗ = 𝐗[𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐗]𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐯𝜋

= 𝐗(𝐗⊤𝐅𝜆𝐗⊤)−1𝐗⊤𝐅𝜆𝐯𝜋 = 𝚷𝜆𝐯𝜋,
(4.41)

7For easier presentation, we use constant 𝛾, but the argument holds in the GVF setting
with state-dependent discounting.

8From Sutton and Barto (2018, equation 11.24).
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where
𝐅𝜆 ≝ 𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)

𝚷𝜆 ≝ 𝐗(𝐗⊤𝐅𝜆𝐗⊤)−1𝐗⊤𝐅𝜆.
(4.42)

Which is to say that the TD(λ) fixed-point can be interpreted as a projection

of the value function onto the approximation subspace of 𝐗 under a weighted

L2 norm9.

If we try to estimate the bias vector 𝛆 = 𝐯𝜋 − 𝐯𝛉 = (𝐈 − 𝐏𝚪)−1𝛅, we see
that:

�̂�𝛉 = 𝚷𝜆𝛆 = 𝚷𝜆(𝐈 − 𝐏𝚪)−1𝛅

= 𝚷𝜆(𝐈 − 𝐏𝚪)−1(𝐫 + 𝐏𝚪𝐯𝛉 − 𝐯𝛉)

= 𝚷𝜆(𝐈 − 𝐏𝚪)−1𝐫 + 𝚷𝜆(𝐈 − 𝐏𝚪)−1(𝐏𝚪 − 𝐈)𝐯𝛉

= 𝚷𝜆𝐯𝜋 − 𝚷𝜆𝐯𝛉 = 𝐯𝛉 − 𝐯𝛉

= 𝟎.

(4.43)

This makes sense, since at an estimator’s fixed-point we would expect that

its bias to be minimal10. However, it implies that our estimator for �̂�𝛉 will

be zero for all states, assuming we use the same approximation architecture

that produced 𝐯𝛉.

If we try to construct a target ̂ℰ(2)
𝑡 like we did for ̂𝐺(2)

𝑡 in (3.16), we get:

̂ℰ(2)
𝑡 = 𝛿2

𝑡 + 2𝛾𝛿𝑡 ̂𝜀(𝑆𝑡+1)⏟⏟⏟⏟⏟⏟⏟
like �̂�(2)

𝑡+1

+𝛾2 ̂ℰ(2)
𝑡+1, (4.44)

9This has been observed before (for example, by Sutton, Szepesvári and Maei (2009),
Scherrer (2010) and Maei (2011)) for the case of TD(0) and TD(1), and has presumably
been noted in other works.

10If that were not the case, we could use our estimate of �̂� to reduce the error further,
thereby producing a superior approximation, an apparent contradiction. If �̂� ≠ 𝟎, either 𝐯
is not at its fixed-point, or we are comparing our approximation against a different objective
than the one it is minimizing. This is why TD(0) and TD(1) have different fixed points—
they minimize different objective functions (although they have the same solution when 𝐗
has rank equal to |𝒮|).
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but since ̂𝜀𝛉(𝑠) = 0 for 𝐯 = 𝐯𝛉, this just becomes

̂ℰ(2)
𝑡 = 𝛿2

𝑡 + 𝛾2 ̂ℰ(2)
𝑡+1, (4.45)

which is to say that ̂ℰ(2)
𝑡 is equivalent to the 𝛿2-return at the value function’s

fixed-point. This comports with the fact that, when 𝐯 = 𝐯𝜋, RE is entirely

comprised by the variance, as we can see from the bias-variance decomposi-

tion:

RE(𝑣) = E
𝜋
[(𝐺𝑡 − 𝑣(𝑆𝑡))2] = E

𝜋
[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2]

⏟⏟⏟⏟⏟⏟⏟
variance

+ E
𝜋
[(𝑣𝜋(𝑆𝑡) − 𝑣(𝑆𝑡))2]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias2

.

(4.46)

Circling back to the original question about what the target represents,

we could either regard the 𝛿2-return as a proxy for the variance or the mean

square return error. But since the learning agent has no way of perceiving

its own bias, we prefer to think of 𝐮DV as representing the variance of the

MDP as experienced by the agent.
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4.5 The Direct Variance TD Algorithm

This section introduces a TD-style algorithm targeting the 𝛿2-return for vari-

ance estimation which we call Direct Variance Temporal Difference Learning,

abbreviated DVTD: a model-free, online, incremental learning algorithm.

The name is apt for two reasons:

1. It is essentially a temporal-difference algorithm, and enjoys many of the

same advantages as standard TD(λ). As with TD(λ), DVTD’s updates

have time- and memory-complexity of 𝒪(𝑛), where 𝑛 is the number of

parameters.

2. Though similar to VTD in that it uses an estimate of the value function

to construct its approximation target, unlike VTD, it does not require

further computation to produce the variance— instead, it learns the

variance directly.

We first present the update equations for DVTD(λ) in the tabular setting:
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TABULAR DVTD(λ)

𝑧𝑡(𝑠) =
⎧{
⎨{⎩

1 + 𝛾𝑡𝜆𝑡𝑒𝑡−1(𝑠), if 𝑠 = 𝑆𝑡

𝛾𝑡𝜆𝑡𝑒𝑡−1(𝑠), if 𝑠 ≠ 𝑆𝑡

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡)
𝑣(𝑆𝑡) = 𝑣(𝑆𝑡) + 𝛼𝑡𝛿𝑡𝑒(𝑆𝑡)

̃𝛾𝑡 = 𝛾2
𝑡 𝜅2

𝑡

�̃�𝑡+1 = 𝛿2
𝑡

̃𝑧𝑡(𝑠) =
⎧{
⎨{⎩

1 + ̃𝛾𝑡�̃�𝑡 ̃𝑒𝑡−1(𝑠), if 𝑠 = 𝑆𝑡

̃𝛾𝑡�̃�𝑡 ̃𝑒𝑡−1(𝑠), if 𝑠 ≠ 𝑆𝑡

̃𝛿𝑡 = �̃�𝑡+1 + ̃𝛾𝑡+1 ̃𝑣(𝑆𝑡+1) − ̃𝑣(𝑆𝑡)
̃𝑣(𝑆𝑡) = ̃𝑣(𝑆𝑡) + ̃𝛼𝑡 ̃𝛿𝑡 ̃𝑒(𝑆𝑡)

⎫}}}
⎬}}}⎭

TD Component

⎫}}}}}}
⎬}}}}}}⎭

DV Component

The TD component estimates the value function and produces the cumu-

lant, 𝛿2
𝑡 , that is then fed into the DV component. The DV component is

essentially just another instance of TD(λ) using 𝛿2
𝑡 in place of 𝑅𝑡+1, a differ-

ent discount factor, ̃𝛾, and potentially different bootstrapping and stepsize

(�̃� and ̃𝛼 respectively).

Here we use ̃𝛾 = 𝛾2𝜅2, with different values of 𝜅 allowing us to estimate the

variance of different 𝜆-returns, such that �̂�(𝑠) ≈ E𝜋[𝐺𝜅
𝑡 ] For example, with

𝜅 = 1, DVTD estimates the variance of the Monte Carlo return, for 𝜅 = 0
it targets the variance of the one-step TD error, and for 𝜅 = 𝜆 it learns the

variance of the 𝜆-return used by the TD component.

Schematically, the updates look something like this:
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γ̃t+1

δ2t

vt+1
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Figure 4.1

Under linear function approximation, the update equations are:

LiNEAR DVTD(λ)

𝐳𝑡 = 𝐱𝑡 + 𝛾𝑡𝜆𝑡𝐳𝑡−1

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝛉⊤
𝑡 𝐱𝑡+1 − 𝛉⊤

𝑡 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐳𝑡

̃𝛾𝑡 = 𝛾2
𝑡 𝜅2

𝑡

�̃�𝑡+1 = 𝛿2
𝑡

̃𝐳 = 𝐱𝑡 + ̃𝛾𝑡�̃�𝑡 ̃𝐳𝑡−1

̃𝛿𝑡 = �̃�𝑡+1 + ̃𝛾𝑡+1𝐰⊤𝐱𝑡+1 − 𝐰⊤𝐱𝑡

𝐰𝑡+1 = 𝐰𝑡 + ̃𝛼𝑡 ̃𝛿𝑡 ̃𝐳𝑡

An example implementation of DVTD for linear function approximation is

provided in Algorithm 2 (Page 136).

We can observe that it is clearly 𝒪(𝑛) per time-step with respect to the

number of features, and requires approximately twice as much time and

memory to estimate both the value and variance of the return. Note that,

while the basic algorithm uses TD(λ) for both estimates, we could easily

substitute alternate methods for each component— for example, learning

the value function with LSTD(λ) and the variance with GTD(λ), or using a

different representation for the two components.
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The advantage of this simpler formulation is that it make analysis easier.

In the next section, we discuss the algorithm’s fixed-point and outline a proof

of convergence that uses existing results and extends them to DVTD.

4.6 Convergence Results

The ODE method involves comparing a discrete time stochastic approxima-

tion scheme (in this case, DVTD) with a related ordinary differential equa-

tion, with the goal of showing that:

1. The differential equation converges to some stable equilibrium,

2. The iterates of the approximation scheme become arbitrarily close to

the trajectory of the DE.

We described the general framework for this technique in Section 2.6 and

now apply it to DVTD. Our proof addresses a modified version of DVTD

that makes a number of assumptions, although in our experiments suggest

that the algorithm is stable and convergent even without these restrictions.

4.6.1 Setup and Assumptions

In order to apply the ODE method, we first have to establish that DVTD

can in fact be written in the required form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛, 𝛉𝑛) + 𝐍𝑛+1], (2.43)

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝐰𝑛, 𝛉𝑛) + 𝐌𝑛+1]. (2.44)
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For 𝜆 = �̃� = 0, DVTD’s iterates have the form:

𝛿𝑡 = 𝑅𝑡+1 + 𝛉⊤
𝑡 (𝛾𝑡+1𝐱𝑡+1 − 𝐱𝑡)

�̃�𝑡+1 = 𝛿2
𝑡

̃𝛿𝑡 = �̃�𝑡+1 + 𝐰⊤
𝑡 ( ̃𝛾𝑡+1𝐱𝑡+1 − 𝐱𝑡)

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑛𝛿𝑡𝐱𝑡

𝐰𝑡+1 = 𝐰𝑡 + 𝛽𝑡 ̃𝛿𝑡𝐱𝑡.

(4.47)

If we assume transitions are i.i.d. (𝓐. 2.2), we can condense DVTD’s iter-

ates to:
𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛉⊤

𝑛(𝛾𝑛𝐱′
𝑛 − 𝐱𝑛)]𝐱𝑛

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[ ̃𝑟𝑛 + 𝐰⊤
𝑛( ̃𝛾𝑛𝐱′

𝑛 − 𝐱𝑛)]𝐱𝑛,
(4.48)

with 𝑠𝑘 ∼ 𝑑𝜋(⋅), 𝑠′
𝑘 ∼ 𝑃𝜋(𝑠𝑘, ⋅), 𝑟𝑘 ∼ 𝑟(𝑠𝑘, 𝑠′

𝑘) and 𝛾𝑘 = 𝛾(𝑠′
𝑘). Then we can

see that the TD component fits the mould of (2.44), with

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]

𝐠(𝛉) = −𝐀𝛉 + 𝐛 = −𝐀[𝛉 − 𝛉∗]

𝐌𝑛+1 = 𝑟𝑛 + 𝛉⊤
𝑛(𝛾𝑛𝐱′

𝑛 − 𝐱𝑛) − 𝐠(𝛉𝑛) = 𝛿𝑛𝐱𝑛 − 𝐠(𝛉𝑛),

(4.49)

where
𝐀 = E𝜋[𝐱𝑘(𝐱𝑘 − 𝛾′

𝑘𝐱′
𝑘)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗

𝐛 = E𝜋[𝑟𝑘 𝐱𝑘] = 𝐗⊤𝐃𝜋𝐫
(4.50)

are defined as usual11. To get −𝐀𝛉 + 𝐛 = −𝐀[𝛉 − 𝛉∗], we assume that 𝐀
is nonsingular12, so 𝛉∗ = 𝐀−1𝐛 is well-defined, which allows us to substitute

𝐀𝛉∗ for 𝐛. We also note that 𝐠(𝛉, 𝐰) = 𝐠(𝛉) since the DV component does

not affect the TD part.

We can identify the analogues of 𝐀 and 𝐛 in the DV component as well,
11See Section 2.6.1, particularly the material around (2.35) and (2.36).
12This is true even under state-dependent discounting provided that 𝐗 is full rank and 𝐏𝜋

is an ergodic stochastic matrix. The interested reader can refer to Mahmood 2017, Theorem
32 (and the rest of Chapter 9 if more context is desired).
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which should be unsurprising given its roots as a TD method. Taking the

expectation for an arbitrary transition at time 𝑘,

E𝜋[( ̃𝑟𝑘 + 𝐰⊤
𝑘 ( ̃𝛾𝑘𝐱′

𝑘 − 𝐱𝑘))𝐱𝑘] = E𝜋[ ̃𝑟𝑘𝐱𝑘]⏟
�̃�(𝛉)

+E𝜋[(𝐰⊤
𝑘 ( ̃𝛾𝑘𝐱′

𝑘 − 𝐱𝑘))𝐱𝑘]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�̃�

.

(4.51)

Note that �̃� is not constant, in contrast to the TD component. It depends

on 𝛉 via ̃𝑟𝑛 = 𝛿2
𝑛(𝛉), hence we write �̃�(𝛉) to reflect that fact13. Conversely,

the fact that �̃� does not depend on 𝛉 is also notable. Insofar as we are

justified in assuming 𝐀 is non-singular, then the same holds for �̃�, provided

̃𝛾(𝑠) ∈ [0, 1) for all 𝑠 ∈ 𝒮.

Letting �̃� be the diagonal matrix with Γ̃𝑖𝑖 = 𝛾(𝑖), we can rewrite the above
in matrix notation:

�̃�(𝛉) = E𝜋[𝐱𝑘(𝐱𝑘 − 𝛾𝑘𝐱′
𝑘)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋�̃�)𝐗, (4.52)

�̃�(𝛉) = E𝜋[ ̃𝑟𝑘(𝛉) 𝐱𝑘] = 𝐗⊤𝐃𝜋 ̃𝐫(𝛉). (4.53)

We can then express the DV component in the desired form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝛉𝑛, 𝐰𝑛) + 𝐍𝑛+1] (4.54)

𝐡(𝛉, 𝐰) = −�̃�𝐰 + �̃�𝛉 = −�̃�[𝐰 − 𝐰∗(𝛉)] (4.55)

𝐍𝑛+1 = ̃𝑟𝑛 + 𝐰⊤
𝑛( ̃𝛾𝑛𝐱′

𝑛 − 𝐱𝑛) − 𝐡(𝛉𝑛, 𝐰𝑛) = ̃𝛿𝑛(𝛉)𝐱𝑛 − 𝐡(𝛉𝑛, 𝐰𝑛),
(4.56)

where we define 𝐰∗ ∶ R𝑑 → R𝑑 as the fixed-point for the DV component for

a particular TD component weight vector:

𝐰∗(𝛉) ≝ �̃�−1�̃�(𝛉). (4.57)

While similar to the iterates for the TD component, the DV part is nonlin-
13We might also write �̃� (with the 𝛉 as subscript) as a shorthand.
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ear in 𝛉. This makes the analysis more difficult, as 𝐡(𝛉, 𝐰) is non-Lipschitz,
which denies us the ability to simply apply standard theorems for convergence

and stability. In order to circumvent those issues, we make an additional as-

sumption in the form of a projection step.

Letting 𝐶 ⊂ R𝑑 be some compact set, chosen such that it is large enough

to include all possible solutions for the 𝛉∗ and 𝐰∗, and define the projection

𝚼 ∶ R𝑑 → 𝐶 as:

𝚼(𝐳) ≝ argmin
�̂�∈𝐶

‖𝐳 − ̂𝐳‖. (4.58)

This obviates issues from possible divergence and in practice actually invok-

ing the projection does not seem to be necessary. While not ideal14, the use

of a projection step is fairly common in the literature.

We end up with updates of the form:

𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]), (4.59)

𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]). (4.60)

Finally, we also assume that the rewards and features are bounded:

Assumption 4.1 (Bounded Features)

The rewards are bounded with 𝑟𝑛 ≤ 𝐾𝑏 for all 𝑛 ≥ 0, as are the features,
with sup𝑠∈𝒮 ‖𝐱(𝑠)‖ ≤ 𝐾𝑏 for some scalar 𝐾𝑏 > 0.

This assumption is helpful for a number of reasons (as will become evident

shortly). It can be weakened somewhat, as we only really need bounds on

the moments15, but that complicates the analysis for dubious benefit.
14While we would have preferred to provide a result without recourse to a projection step,

the other approaches we tried also seemed to entail artificial restrictions, such as mandating
a particular stepsize sequence.

15For the convergence of TD(0), for example, we need E𝜋[𝐱𝑛𝛿𝑛] = E𝜋[𝐱𝑛𝑟𝑛 +𝐱𝑛(𝛾𝐱′ −𝐱)⊤𝛉]
to be well-defined, which implies that 𝐱𝑛 needs to have a bounded second moment. The
DV component complicates this further, as 𝐱𝑛𝛿2

𝑛 shows up in the update equations, which
would suggest that the features to be bounded up to their fifth moment.
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With the foregoing in mind, we can state our convergence theorem:

Theorem 4.6 (DVTD Convergence for λ=0)

Let {(𝑠𝑛, 𝑠′
𝑛, 𝑟𝑛)}𝑛≥0 be a sequence of transitions that satisfies 𝓐. 2.1

and 2.2, i.e., (𝑠, 𝑠′, 𝑟) is sampled i.i.d., with 𝑟𝑛 = 𝑟(𝑠𝑛, 𝑠′
𝑛). Assume

that the features 𝐱𝑛 = 𝐱(𝑠𝑛) and rewards 𝑟𝑛 are bounded according as

in𝓐. 4.1, and that the stepsize sequences {𝛼𝑛} and {𝛽𝑛} are chosen such

that 𝓐. 2.3 holds. Further assume that 𝐀 and �̃� are positive definite

matrices.

Then for updates of the form (4.59) and (4.60), we have that:

lim
𝑛→∞

(𝛉𝑛 , 𝐰𝑛) = (𝛉∗, 𝐰∗) w.p. 1. (4.61)

Our proof of Theorem 4.6 proceeds by verifying the conditions for The-

orem 2.2. Having fitted DVTD to the two-timescale framework, all that re-

mains is to verify the conditions (𝓐. 2.3 to 2.9)that undergird Theorem 2.2.

We provide a sketch of our reasoning in the following section, with more

detailed exposition in Appendix A.

4.6.2 Proof Sketch

First, we note that some of the conditions are under experimenter control

or true based on the assumptions made in Section 4.6.1. For the stepsize

requirement (𝓐. 2.3), we assume it is satisfied by appropriate choice of {𝛼𝑛}
and {𝛽𝑛}.

The projection step in (4.59) and (4.60) implicitly guarantees that the iter-

ates are bounded (𝓐. 2.7), and also that the various functions are Lipschitz
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𝓐. 2.4. For the TD component, we have:

𝐠(𝛉) = 𝐛 − 𝐀𝛉 = 𝐗⊤𝐃𝛅(𝛉) = −𝐀[𝛉 − 𝛉∗], (4.62)

which is clearly linear in 𝛉 and therefore Lipschitz. Showing that the DV

component is Lipschitz is more difficult, because while it is linear in 𝐰, it is

nonlinear with respect to 𝛉; however, due to the projection, this issue can be
resolved.

To show that 𝐰∗(⋅) and 𝐡(⋅, ⋅) are Lipschitz, we first demonstrate that

the TD error is bounded, then use that to prove 𝛅(2)(𝛉) is bounded. As a

bounded and continuous function, 𝛅(2) is Lipschitz, and therefore so are the

other functions, because they are linear with respect to 𝛅(2).

Convergence of the TD component has been proved in a number of different

places16 which takes care of 𝓐. 2.9.

A similar argument can be used to show the fast ODE converges, because

with 𝛉 fixed, the DV component is essentially temporal difference learning

with a modified reward and discount factor. If the TD component is conver-

gent (which we tacitly assume), we can show that 𝐰∗(𝛉) = �̃�−1 ̃𝐛(𝛉) exists
and is the unique globally asymptotically stable equilibrium point of the fast

timescale ODE. Furthermore, due to the projection step it is a Lipschitz

function and therefore 𝓐. 2.8 is satisfied.

The only remaining assumptions we need to check are the noise bound,

𝓐. 2.6, as well as verifying that {𝐌𝑛} and {𝐍𝑛} are martingale difference

sequences. We can actually show that ‖𝐌𝑛+1‖ and ‖𝐍𝑛+1‖ are bounded with
respect to the weights, which makes establishing bounds on E𝜋[‖𝐌𝑛+1‖2|ℱ𝑛]
straightforward. It also implies that they are square integrable, and since by

construction {𝐌𝑛} and {𝐍𝑛} both have expectation zero, we can conclude
16E.g. Tsitsiklis and Van Roy 1997 for TD(λ), with finite sample analyses provided in

Dalal et al. 2017; Bhandari, Russo and Singal 2018 under more general conditions.
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that they are indeed martingale difference sequences, validating 𝓐. 2.5.

Having verified the necessary assumptions, Theorem 2.2 applies, and we

can immediately conclude that Theorem 4.6 holds as well.

We note that in practical applications many of these assumptions may be

violated to a greater or lesser degree. In our experience, however, we have

found DVTD to be well-behaved even without using a projection step or

decaying stepsize.
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CHAPTER 5

EXPERiMENTS

To gather insight into DVTD, we examine its performance on some standard

problems and compare it with alternative methods of estimating the variance

of the return.

We first consider a discrete MDP, referred to as the Modified Tamar Chain,

which is a variant of the bounded random walk used by Tamar, Castro and

Mannor 2016. For that series of experiments we compare the moment-based

DVTD and VTD, but also report on the performance of the C51 distribu-

tional reinforcement learning algorithm. Later, we test DVTD and VTD in

the more complicated Mountain Car testbed. We performed experiments

in a number of different environments, but found that the outcomes were

broadly similar; to avoid undue repetition we content ourselves with report-

ing on these two illustrative cases.

Pseudocode for the algorithms used is given in Appendix C. The Python

code used in the actual experiments is also available online1.

5.1 Modified Tamar Chain

Random walk MDPs are fairly common in the stochastic approximation lit-

erature. The MDP we analyze here was used in (Tamar, Castro and Mannor

2016), wherein they estimate the variance via the second moment, making
1https://github.com/rldotai/varcompfa
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it an appropriate testbed for comparison. We use a version with 11 states,

as opposed to the original 32 states, because the additional states made it

harder to report on and visualize without qualitatively affecting the results.

The environment consists of a chain of states numbered 0 to 10, with the

agent starting in state 0 for all episodes. Each episode terminates when

the agent reaches state 10. In each non-terminal state 𝑖, the agent has a

probability of transitioning to state 𝑖 + 1 (“right”) with probability 0.7, and

to state 𝑖−1 (“left”) with probability 0.3, except in state 0, where if the agent
moves to the left it remains in the same state. For each transition to a non-

terminal state, the agent receives a reward of -1; when transitioning to the

terminal state it receives a reward of 0. We used a constant discount factor

of 1, meaning that each state’s value essentially represents the expected time

until termination.

An illustration of the MDP is provided in Fig. 5.1.

s0 s1 s2 · · · s8 s9 s10 s11

p = 0.7

r = −1

p = 0.7
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p = 0.7
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r = −1
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r = −1

p = 0.7

r = 0

Figure 5.1: A modified version of an MDP from Tamar, Castro and Mannor (2016);
essentially it is a biased random walk. The agent starts each episode in state 0, with
the episode terminating once the agent reaches state 11. Its transition probabilities are
biased so that it tends to transition to the “right”, towards the terminal state.

5.1.1 Methodology

We conducted experiments to compare the algorithms across various hyper-

parameter settings.

One way of evaluating a learning agent’s performance is by comparing

its approximation with the actual function we seek to estimate. For value

82



functions, this is frequently the standard Mean Square Value Error, which

measures the distance between the learned value function and 𝑣𝜋. With

𝑑𝜋 ∶ 𝒮 → R the policy’s stationary distribution, the value error is defined as2:

VE( ̂𝑣) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2] = E𝜋[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2]. (5.1)

The advantage of VE is that it measures the difference between ̂𝑣 and 𝑣𝜋

absent noise or other distractions, and its minimum is zero, achieved when

̂𝑣 = 𝑣𝜋. Its main drawback is that we have to be able to calculate 𝑣𝜋 and 𝑑𝜋,

although this is fairly straightforward for discrete MDPs.

We can also define analogous errors3 for the second moment and variance:

VE( ̂𝑣(2)) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣(2)
𝜋 (𝑠) − ̂𝑣(2)(𝑠))2], (5.2a)

VE(�̂�) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑢𝜋(𝑠) − �̂�(𝑠))2]. (5.2b)

For scaling reasons, we tend to report the Root Mean Square Value Error,

abbreviated RMSVE, which is simply:

RMSVE( ̂𝑣) ≝ (∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2])
1/2

= √VE( ̂𝑣). (5.3)

We plot the return’s expected value, second moment, and variance for the

Tamar Chain in Fig. 5.2.
2From Sutton and Barto (2018, Equation 9.1), although we are using the on-policy version

of VE. That is to say, the error is weighted with respect to the on-policy distribution; other
weightings are sometimes considered (e.g., the uniform distribution) but this is arguably the
more natural choice.

3Which we also refer to as “value errors”, since VTD and DVTD both assign a value to
states, and the formula for those errors is the same as for the standard VE but using 𝑣(2)

𝜋
and 𝑢𝜋 used in place 𝑣𝜋 as the target function.
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Figure 5.2: The expected value, second moment, and variance of the return for the
Modified Tamar Chain problem versus state. The value function is roughly linear,
except at the ends of the chain, while the second moment is nonlinear. The variance
is also roughly linear, except near the starting states.

Representation We performed experiments with two different state rep-

resentations. The first representation, referred to as tabular features4, with

each state’s feature vector being given as:

[𝐱(𝑖)]𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
for 𝑖 ∈ 𝒮. (5.4)

For example, the feature vector for state 𝑠 = 1 is given by 𝐱(1) = [0, 1, 0, … , 0, 0]⊤.

The second representation, which we call Modified Tamar Features, uses

a rescaled version of the features provided by Tamar, Castro and Mannor

(2016). The original representation consisted of two sets of features, one for

the value estimator, �̃�val(𝑠) = [1, 𝑠]⊤, and another for the variance estim-

ator, �̃�var(𝑠) = [1, 𝑠, 𝑠2]⊤. We found those features could produce instability,

since the relative magnitudes of the features for each state can vary widely.

For example, with �̃�var the largest feature vector has a norm two orders of

magnitude greater than that of the smallest5.

To address this, we rescaled the features while keeping the general scheme:
4Because each feature can be thought of as an entry in a table, one for each of the

environment’s states.
5That is, ‖�̃�(0)‖ = 1, while ‖�̃�(10)‖ ≈ 100
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𝐱val(𝑠) ≝ [1, (𝑠 + 1)
|𝒮| ]

⊤
= [1, (𝑠 + 1)

11 ]
⊤

, (5.5a)

𝐱var(𝑠) ≝ [1, (𝑠 + 1)
|𝒮| , (𝑠 + 1)2

|𝒮|2 ]
⊤

= [1, (𝑠 + 1)
|𝒮| , (𝑠 + 1)2

121 ]
⊤

. (5.5b)

As the modified features are only subject to a linear transformation, the al-

gorithms’ fixed points for 𝐯 and 𝐮 were unchanged, but the rescaling permits

a wider choice of stepsize and removes a potential source of numerical error.

5.1.2 Tabular Experiments

In the tabular case, the estimators can represent the return’s expected value,

second moment, and variance exactly. It is the simplest setting available, and

helps verify that our implementation works correctly. The tabular setting is

also useful when examining the algorithms under function approximation: if

we discover unexpected or undesirable behaviour in the FA case, then by

comparing with the tabular results we can determine whether the fault lies

with the algorithms themselves or is an artifact of the representation we used.

We ran the experiment twelve times, with each run consisting of 125,000

time-steps, using a constant stepsize of 𝛼 = 0.01 for all time-steps.

When 𝜆 = �̄� = 0, DVTD and VTD appear to be equivalent, producing very

similar estimates at each point in time, with similar error curves. However,

for other choices of 𝜆 or �̄�, the transient estimates are observably different,

with noticeably different RMSVE curves, as can be seen in Fig. 5.3.
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Figure 5.3: RMSVE for different choices of 𝜆 and �̄�, with the same stepsize. The
top left has 𝜆 = �̄� = 0; top right 𝜆 = 0 and �̄� = 0.9; bottom left 𝜆 = 0.9 and �̄� = 0.0;
bottom right 𝜆 = �̄� = 0.9. The average error is plotted as a solid line, while shaded
regions represent the square root of the variance.
In the table-lookup setting, all the algorithms we use should be able

to represent their targets perfectly, although with constant stepsize there

will typically be a certain amount of steady-state error due to noise. Here,

nonzero values of 𝜆 or �̄� are somewhat counterproductive because they en-

tail greater variance without reducing the bias. Indeed, we observe that the

lowest asymptotic error is achieved when 𝜆 = �̄� = 0.

TD(λ) exhibits a roughly exponential convergence rate to its asymptote,

which was accelerated when using higher values of 𝜆, whereas DVTD and

VTD seem to have roughly two phases to their convergence. At the beginning

of each experiment, their error either decreased slowly or (in VTD’s case)
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had a transient spike6, before eventually heading towards their respective

asymptotes. We observe that these phases seemed to correspond to some

threshold level of accuracy for the TD’s value estimate. Once the value

estimate was sufficiently close to 𝑣𝜋, they both began to approach their fixed-

point at a faster rate7.

Both DVTD and VTD converge faster for higher values of 𝜆 and �̄�, albeit
with higher asymptotic noise. This is also the case for TD(λ), but the ad-

ditional noise from higher 𝜆 is almost unnoticeable in comparison. Finally,

we note that across all the experiments we performed, DVTD had lower

asymptotic error, faster convergence, and less noise relative to VTD.

5.1.3 Function Approximation

Next, we consider the algorithms under function approximation. Using the

Modified Tamar Features from (5.5), the value function cannot be perfectly

captured8. We first examine the algorithms’ behaviour analytically, and then

compare how they perform in simulated experiments.

Analytical Results

If the value function is not exact, the approximation target for DVTD is no

longer the true variance of the return, nor is VTD’s target the true second

moment. This problem is compounded by the fact that such a target may

also be imperfectly representable with the given features, so we are effect-

ively making an approximation from an approximation. Furthermore, the
6Intriguingly, VTD only seemed to experience high transient error when 𝜆 ≠ �̄�, and it

seemed to perform best when 𝜆 = �̄�. We note that this also holds for the other settings of
𝜆 and �̄� that we tried, but further experiments are needed to gauge whether this is mere
coincidence rather than because of some underlying principle.

7This is particularly noticeable for 𝜆 = �̄� = 0, where the error curves are roughly sig-
moidal.

8Because (5.5a) is a linear function of the state number, while the the expected return
for the MDP is nonlinear (see Fig. 5.2).
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approximation targets and the algorithms’ fixed-points are impacted by the

bootstrapping hyperparameters 𝜆 and �̄�.

Performing a full hyperparameter sweep can be quite time consuming if

done via simulated experiments. Fortunately, using the methods described

in Section 2.5, we can compute the required quantities analytically, which

provides a straightforward way of evaluating the fixed-points of the algorithms.

For each value of 𝜆, we computed the value function from TD(λ)’s fixed-

point, and used that to compute the approximation targets E𝜋[𝐻𝑡] and

E𝜋[ ̂𝐺2
𝑡 ]. We then solved for DVTD and VTD’s respective fixed-points for

different choices of �̄�. Altogether, we sampled (𝜆, �̄�) = {0.0, 0.05, … , 1.0} ×
{0.0, 0.05, … , 1.0}, for a total of 441 different points. We plot the results in

Fig. 5.4.
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Figure 5.4: The RMSVE for the fixed-points of DVTD (left) and VTD (right) on the
Tamar Chain task as a function of 𝜆 and �̄� using the Modified Tamar Features.

The most noteworthy observation is that DVTD’s fixed-point has lower

RMSVE than VTD, even when pitting VTD’s best hyperparameter settings

against DVTD’s worst.

The behavior of the fixed-points’ RMSVE as a function of bootstrapping

was somewhat unexpected. We predicted the accuracy of the estimates would
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improve with higher 𝜆 or �̄�, but we instead observe that DVTD’s error in-

creases slightly as a function of �̄�; VTD’s RMSVE decreases with higher �̄�,
but its minimum when 𝜆 is at 𝜆 = 0.8 rather than at 𝜆 = 1.

Simulation Experiments

While analytical results can be informative, we also seek to evaluate how

DVTD performs with real data.

1. Does it converge to the predicted fixed-points?

2. How does it behave under varied hyperparameters?

3. Is it robust and stable enough to be used in practice?

To answer these questions, we performed a number of experiments using

different bootstrapping (𝜆 and �̄�) as well as varied stepsizes (𝛼 and ̄𝛼). For
comparative purposes, we include VTD and C51 as alternative variance es-

timation methods.

The typical experiment has error curves like that of Fig. 5.5. As in

the earlier tabular experiments (Section 5.1.2), DVTD and VTD exhibited

two-phase convergence, meandering until the value estimate (from TD(λ))

reached a certain level of accuracy, at which point their RMSVE begins to

decrease. Interestingly, the RMSVE for C51’s value estimates also flattened

out well before its variance estimation error. During the transient and steady-

state periods, VTD had significantly higher noise than the other algorithms;

C51’s estimates were more consistent, albeit at the price of much slower

convergence.

To provide additional context, in Fig. 5.6, we plot the RMSVE curves for

different values of 𝜆 and �̄� with constant stepsize. Overall, we found that

DVTD outperforms VTD and C51 in terms of asymptotic RMSVE. This
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is somewhat expected from the analytical results— DVTD’s fixed-point has

the lowest RMSVE of all the variance estimators, so insofar as it converges

(and we haven’t made a mistake in our calculations), then it should have the

best performance.

For the moment-based algorithms (DVTD and VTD), the increased ac-

curacy of ̂𝑣 from higher values of 𝜆 was generally not worth the additional

noise incurred. Both DVTD and VTD appear to magnify the effects of vari-

ance in the value function, to the point that their asymptotic error seems

to hover above their predicted fixed-points9. We can observe that for 𝜆 = 0,
their error curves hover around their predicted fixed points; higher values

have better asymptotic errors but these are not easily reached. On the other

hand, C51 benefits from higher values of λ without exhibiting much increase

in variance.

While we know (from the earlier analysis) that DVTD’s fixed-point de-

grades slightly with higher �̄�, our experiments revealed that this was a minor
problem compared to the effect of the greater noise. Increasing �̄� did accel-

erate convergence, but only once the value estimate was close enough to

its asymptote for the approximation targets to be stable. For every choice

of bootstrapping or stepsize, DVTD exhibited lower variance relative VTD.

When comparing DVTD and VTD, we conjecture that this will hold for

arbitrary hyperparameter settings, so long as VTD and DVTD share the

same hyperparameters, since it has been observed to be the case in every

experiment we performed.

In contrast, C51 produced remarkably consistent estimates, even with
9This is understandable in light of the fact that they are using TD’s value function, which

for constant stepsize will be of the form ̂𝑣 = 𝑣TD +noise. The expressions for both algorithms’
fixed-points include a term for the squared value function, meaning that the effect of the
noise does not average out. In experiments with decreasing stepsize, we observed that both
DVTD and VTD do in fact converge to their analytic fixed-points.
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higher ̄𝛼 and 𝜆. This fact, along with the slower convergence for C51 re-

lative to VTD and DVTD when using the same stepsize, suggested that a

straightforward comparison across different choices of ̄𝛼 might not be ap-

propriate. Even for very high stepsize ( ̄𝛼 = 0.5), C51 was very stable and

appeared to converge to its fixed-point, while VTD and DVTD’s asymptotes

were noticeably above their predicted fixed-point. We can see this in Fig. 5.7

and as part of the montage in Fig. 5.9.

While C51’s stability at higher stepsizes was impressive, we note that it

nonetheless failed to converge before DVTD, and even with ̄𝛼 = 0.5, C51’s
variance estimate still takes longer to converge than DVTD does with 𝛼 =

̄𝛼 = 0.015625 (shown in Fig. 5.8); at such low stepsizes, DVTD exhibits

comparable stability.
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Figure 5.6: Simplified plots of the RMSVE for DVTD, VTD, and C51 in the Tamar
Chain task under function approximation with various hyperparameters. The y-axis is
linear until 𝑦 = 10, after which it has a logarithmic scale. Each algorithm’s fixed-point
as determined analytically is shown with a dotted line.
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Figure 5.7: A plot of the RMSVE for the TD, DVTD, VTD, and C51 algorithms
over time in the Tamar chain environment under function approximation.
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Figure 5.8: A plot of the RMSVE for the TD, DVTD, VTD, and C51 algorithms
over time in the Tamar chain environment under function approximation.
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Figure 5.9: Simplified plots of the RMSVE for DVTD, VTD, and C51 in the Tamar
Chain environment with function approximation, showing the effects of varying stepsize
on the algorithms’ performance. The y-axis is linear until 𝑦 = 10, after which it uses
a logarithmic scale. Each algorithm’s fixed point is shown with a dotted line.
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5.1.4 Summary

We found that all algorithms were capable of producing reasonable estimates

for the variance of the return, with DVTD’s fixed-point having the lowest

RMSVE, followed by VTD and then C51. From the analytical results we

observed that the accuracy of the value function strongly determines how

good the approximation targets are, yet in practice any benefit from a better

̂𝑣 tends to be overshadowed by the increased variance from higher 𝜆. With

suitably chosen stepsize parameters, all algorithms were capable of reaching

their predicted fixed-points.

In general, DVTD performed at least as well and usually better relative

to VTD for every choice of hyperparameters we investigated, in terms of

convergence rate and stability, in both the tabular setting and under function

approximation. Both moment-based variance learning algorithms had two

phases to their convergence, appearing to begin an abrupt descent in their

error curves once the value function was sufficiently accurate but before it

reached its asymptote. We also observed that C51’s value estimate converged

before its variance estimate, although without the two-phased behavior seen

with DVTD and VTD. Notably, C51 was much more stable compared to the

moment-based variance approximation algorithms, although at the price of

much slower convergence.

Insofar as we are interested in learning the variance of the return, DVTD

appears to be clearly preferable over VTD and C51, although further exper-

iments in other domains would be needed to establish if this is consistently

true.
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5.2 Mountain Car

The mountain car problem (Singh and Sutton 1996) is a standard reinforce-

ment learning test domain, which models an underpowered car as it attempts

to climb a hill from a starting point at the base of a valley. The car cannot

simply drive up the hill from its initial position due to its limited acceleration.

Instead, it has to build up speed by rolling some distance up one hill, and

then reversing direction towards the other hill. Each reversal increases the

height to which it can climb before it runs out of speed, until eventually it

has built up enough energy to reach the summit. In this domain, the desired

control policy one that can reach the summit in the fewest time steps.

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
Position
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U

Goal

Start

Mountain Car
Potential Energy vs. Position

Figure 5.10: Here we show the car’s potential energy as a function of position.
This domain is essentially a physics problem where the agent needs to gather sufficient
energy to reach the summit. The agent can accelerate forwards, backwards or idle; as
depicted, “forwards” means to the right. It does not have enough acceleration to drive
directly to the goal starting from rest at the hill’s base, but the problem can be solved
by rocking back and forth to build up speed.
Mountain Car was chosen as a test case because the dynamics are determ-

inistic, yet function approximation is needed to account for the continuous
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state space. In a sense, the “true” variance in this problem is zero (assuming

the policy is fixed and deterministic), but from the agent’s perspective, it

will appear to be stochastic so long as the representation is imperfect.

The state space represents the car’s position and velocity, 𝐬𝑡 = (𝑥𝑡, 𝑣𝑡) ∈
𝒮 ⊆ R2. The goal is reached when the agent’s position is greater than 0.5,
regardless of its velocity. For all non-terminal steps the reward is −1. At each
time step 𝑡, the agent can choose to accelerate backwards, idle, or accelerate

forwards; the action space is then 𝑎𝑡 ∈ {0, 1, 2} = 𝒜.

The car has a maximum velocity of ±0.07, and its position is bounded

by [−1.2, 0.6]. When it would exceed these limits, its position/velocity is

clipped to keep it in bounds, except if it reaches the minimum position with

negative velocity (𝑥 ≤ −1.2, 𝑣 < 0), its velocity is set to zero and its position
is set to −1.2.

The preceding verbiage can be summarized via the following update equa-

tions:

𝛼car = 0.001 ̄𝑣𝑡+1 = 𝛼acc(𝑎𝑡 − 1) + 𝛼grav cos (3𝑥𝑡) ̄𝑥𝑡+1 = 𝑥𝑡 + ̃𝑣+1

𝛼grav = −0.0025 ̃𝑣𝑡+1 = clip[ ̄𝑣𝑡+1, −0.07, 0.07] 𝑥𝑡+1 = clip[ ̄𝑥𝑡+1, −1.2, 0.6]
𝑣𝑡+1 = 0 if 𝑥𝑡+1 = −1.2, else ̃𝑣𝑡+1

(5.6)

5.2.1 Experiment Setup

For our experiments, we first trained a control agent to solve the task starting

from a variety of points within the state space, using the implementation of

Mountain Car provided by OpenAI Gym (Brockman et al. 2016).

The control agent was Q(λ), which was selected because it is fast to train
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and deterministic when selecting actions greedily10. We used a discount para-

meter of 𝛾𝑡 = 0.9999 for all non-terminal 𝑡, which reflects the task’s objective
of training the agent to reach the summit in the minimum time. Exploration

was incentivized using optimistic initialization and ε-greedy action selection11,

with 𝜖 = 0.002. The learning rate was a constant 𝛼 = 0.01, and we chose

𝜆 = 0.5 somewhat arbitrarily.

The features used were normalized radial basis functions (NRBF), which

map the continuous, low-dimensional state space into a higher dimensional

(but much sparser) feature vector12.

A radial basis function (RBF) is a function of the form:

RBF(𝐬) = exp {−(𝐬 − 𝛈)⊤𝚺(𝐬 − 𝛈)} , (5.7)

where 𝐬, 𝛈 ∈ 𝒮 ⊆ R𝑛 and 𝚺 ∈ R𝑛×𝑛
+ . The parameter 𝛈 controls where the

function is centered (i.e., has the highest activation), and 𝚺 determines the

shape of the RBF.

The “normalized” aspect of NRBFs comes from the fact that after comput-

ing the activations of the individual RBFs, we rescale their values such that

they sum to unity. Given radial basis functions {𝑓1, … , 𝑓𝑑}, with each 𝑓𝑖

having its own corresponding 𝛈𝑖 and 𝚺𝑖, the 𝑖-th NRBF is given by:
10Other algorithms or different parameterizations might be better at solving the task, but

since we only sought to generate a dataset on which we could test DVTD and VTD, Q(λ)
was sufficient.

11E.g., for 𝜖 = 0.0 the action is chosen to maximize the state-action value, but for 𝜖 = 1/3
the agent would pick a random action a third of the time.

12 We also ran experiments using tile coding, another method for converting a continuous
state space into a sparse feature vector amenable to linear TD methods, but the results were
very similar to the NRBF case. With a sufficient number of tiles, the policies learned were
essentially the same, and the agents had comparable performance. This similarity also held
when learning the value via NRBFs and the variance using tile coding (or vice-versa), and
likewise when using a different representation for the control policy and the value/variance
estimators.
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̄𝑓𝑖(𝐬) = NRBF𝑖(𝐬) = 𝑓𝑖(𝐬)
∑𝑗 𝑓𝑗(𝐬) = 𝑒−(𝐬−𝛈𝑖)⊤𝚺𝑖(𝐬−𝛈𝑖)

∑𝑗 𝑒−(𝐬−𝛈𝑗)⊤𝚺𝑗(𝐬−𝛈𝑗) . (5.8)

We chose the centers of the RBFs along a uniform 30 × 30 grid over the

state space, for a total of 900 features. As such, care had to be taken

with 𝚺 to ensure the features have appropriate scale. Mountain Car’s state

space is [−1.2, 0.6] × [−0.07, 0.07], meaning that the the basis functions are

somewhat closer for the velocities compared to the positions. A rule of

thumb (Kretchmar and Anderson 1997) suggests that the scaling should be

proportional to 𝐼2
𝑖 , where 𝐼𝑖 is the size of the interval for dimension 𝑖 of the

state space. Employing this rule ensured that there was not too much over-

lap between the neighboring basis functions, and by setting the off-diagonal

entries of 𝚺 to zero, the resulting RBFs had circular level sets.

After training, the control agent was able to reach the goal from arbitrary

initial positions, usually taking at most 130 steps to reach the goal. We visu-

alize the resulting behavior by plotting the agent’s trajectories from various

different starting states in Fig. 5.11.
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Figure 5.11: Trajectories produced by the control policy from various initial starting
positions Mountain Car. Each point in the run is colored according to the Monte Carlo
return from that point, which is proportional to the number of steps before reaching
the goal.
We then froze the policy and used it to generate datasets for policy eval-

uation. Figure 5.11 indicates that the agent tends to proceed along certain

flows through the state space, and some regions are only visited if the agent

starts in them. This becomes a bit of a problem if the actions are selected

greedily (e.g., with 𝜖 = 0), as most trajectories originating from a particular

state will be identical13. As we are interested in how well the algorithms ap-

proximate variance, we opted to set 𝜖 = 0.2, in order to inject more stochasti-
city into the policy and to induce the trajectories to cover more of the state

space.

The standard Mountain Car setup initializes the agent randomly with po-

sition between −0.6 and −0.4 and zero velocity. In order to focus on the

parts of the state space that are accessible with the standard initialization,

the datasets we generated had initial states restricted to the sub-interval
13Even with just mostly greedy action selection, the trajectories tend to be fairly similar.
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[−1.0, 0.2] × [−0.02, 0.04]. We sampled from a 40 × 40 grid over that sub-

interval, restarting from the same state ten times for a total of 16, 000 epis-

odes, yielding about 1.5 million transitions in total.

The data thus generated was used to evaluate the algorithms with different

hyperparameters. TD(λ) provided the value estimates used by both DVTD

and VTD over different settings of 𝜆, �̄�, and 𝜅. All algorithms shared the

same stepsize of 𝛼 = 0.05.

This produced a fairly large quantity of data to analyze14. To avoid boring

the reader, we omit presenting most of the results, merely stating that what is

included is representative of the algorithms’ behavior across the experiments

we performed.

5.2.2 Evaluation Methods

For the Tamar Chain experiments (Section 5.1), we could calculate the true

value function and variance analytically, which provided a reasonable bench-

mark for evaluating our agents’ performance. Mountain Car has a continuous

state space15, which makes determining 𝑣𝜋 and 𝑢𝜋 substantially harder.

When the true value function is unavailable, we normally fall back on an

approximation of 𝑣𝜋, or measure our performance a more readily available

error signal, such as the Mean Square Return Error16 The advantage of RE is

that it doesn’t require knowledge of 𝑣𝜋, allowing us to measure the perform-

ance of value-estimating algorithms using only empirical data. However, we
14Furthermore, the experimental setup that we settled on was obtained through explor-

atory work where we iterated through many variations of parameter settings, features, and
initial conditions. The total amount of Mountain Car data thus produced was on the order
of terabytes, even under compression.

15At least in theory— the implementation we used represented position and velocity with
64-bit floats, meaning the state space was ultimately discrete. Even so, there are approxim-
ately 1087 distinct coordinate pairs (𝑠𝑥, 𝑠𝑣) ∈ 𝒮, which is still rather daunting.

16Recall (from (4.40)) that RE( ̂𝑣) ≝ E𝜋[(𝐺𝑡 − ̂𝑣(𝑠))2].
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are keen to gauge how well DVTD estimates the variance, which is regret-

tably defined in terms of 𝑣𝜋: Var [𝐺𝑡] = E𝜋[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2]. Accordingly, we
elect to make an approximation for 𝑣𝜋 and use it to estimate the variance,

using this approximation as the benchmark for DVTD (and VTD).

One common approximation method is grid discretization, which entails

dividing the state space into a grid of 𝑛-dimensional cells. Each state is

mapped to a cell, with nearby states tending to share the same cell. Then we

can approximate state functions (e.g., 𝑣𝜋) by taking an average of the sampled

values of those functions with respect to each cell. With a sufficiently fine

discretization, this tends to accurately capture the behavior of the function

being approximated17.

For our Mountain Car experiments, we chose to use a uniform discretiza-

tion, decomposing each dimension of the state space into the same number

of sub-intervals. The grid-based approximation of the value, second moment,

and variance is then:

𝑣GRiD(𝑠) ≝ Average[𝐺𝑡|𝑆𝑡 ∈ 𝜒(𝑠)], (5.9a)

𝑣(2)
GRiD(𝑠) ≝ Average[𝐺2

𝑡 |𝑆𝑡 ∈ 𝜒(𝑠)], (5.9b)

𝑢GRiD(𝑠) ≝ 𝑣(2)
GRiD(𝑠) − (𝑣GRiD(𝑠))2, (5.9c)

where 𝜒(𝑠) is an indexing function that maps states to their corresponding

cell within the grid. We plot the value function approximation for uniform

grid discretization with varying refinement in Fig. 5.12.

As can be seen in Fig. 5.12, choosing the grid’s refinement is a bit of a

balancing act: if it’s too coarse we lose detail, but if it’s too fine then many

cells will not be visited. With a 64×64 grid we achieve a compromise between
17With some caveats: the function in question should ideally be continuous within each

cell, and each cell should contain enough samples for the average to be representative.
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Figure 5.12: The effects of using various levels of discretization fineness for value
function approximation in Mountain Car. For each level of discretization, we calculate
̂𝑣 following (5.9a). A cell’s colour reflects the average of the returns observed from

that state; when no samples for a cell were available, we leave it uncoloured.
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Figure 5.13: Effects of discretization fineness on variance approximation in Mountain
Car. For each level of discretization, we calculate �̂� using (5.9c)

coverage of the state space and level of detail, so that discretization would

seem to be a reasonable choice for approximating 𝑣𝜋.

Estimating the return’s variance with grid discretization via (5.9c) pro-

duces similar results as when estimating its value, as can be seen in Fig. 5.13.

Most of the states evince relatively low variance, except along a spiral-

shaped portion, where the variance is higher (≈ 750−1250). This spiral seems
to correspond to a possible discontinuity in the value function estimates

in Fig. 5.12, which would seem to be confirmed by the trajectory plot in

Fig. 5.11. In states near the spiral, the agent may need to make an additional

pass to build up more speed before it can reach the goal, but its representation

is not up to the task of identifying whether this is the case or not. The effect

is magnified from setting 𝜖 = 0.2, as the agent may indeed be able to reach
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the goal without backtracking on if it acts greedily, but randomly selecting

an inopportune action might force it to make another pass. This would tend

to cause more variability in regions where (under the greedy policy) it will

barely make it to the goal, while states where it has a comfortable margin

for error will be less affected.

5.2.3 Performance

First, we quickly check that TD(λ) learns a reasonable estimate of the value

function, before moving on to the variance estimators. We also compare the

value function from TD(λ) with the least squares solution, as that is in some

sense the best solution under the given features. The results are plotted in

Fig. 5.14 for 𝜆 = 0.9.

Grid Discretization TD(λ) Least Squares

−175 −150 −125 −100 −75 −50 −25 0

v̂(s)

Comparing Value Estimates

Figure 5.14: A comparison of value function estimates for Mountain Car via three
different approaches: a 64 × 64 grid discretization, TD(λ) with 𝜆 = 0.9, and the least
squares solution.
The value functions agree to the extent that they almost visually indistin-

guishable, which inspires confidence in our approximation for 𝑣𝜋 as well as

the performance of our TD(λ) implementation. For other values of 𝜆, TD
returned similar value functions, with performance tending to increase along
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with 𝜆, as can be seen in Fig. 5.15.

λ = 0.0 λ = 0.5 λ = 0.9 λ = 1.0

−175 −150 −125 −100 −75 −50 −25 0

v(s) = θ>x(s)

TD(λ) Under Different Choices of λ

Figure 5.15: The value functions learned by TD(λ) with different choices of 𝜆. While
generally similar, higher values of 𝜆 seem to produce a crisper separation between the
different parts of the state space.
For estimating variance, DVTD performed capably, although (as discussed

earlier) it is difficult to make this statement precise without access to the true

value function 𝑣𝜋. Instead we can compare it with the approximation found

via discretization, as well as the least squares variance estimate. We plot the

various approximations side-by-side in Fig. 5.16.

Discretization DVTD Least Squares

−200 0 200 400 600 800 1000

û(s)

Comparing Variance Estimates

Figure 5.16: We plot estimates for the variance of the return in Mountain Car using
three different approaches. First, a 64×64 grid discretization, then the estimates from
DVTD (with 𝜆 = �̄� = 0.9), and finally the least squares approximation for variance.
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The results from DVTD show high agreement with those obtained from

the other methods. Its estimates appear a bit blurrier than those from the

grid discretization, but that can be attributed to the fact that DVTD is using

far fewer features18.

However, as in our other experiments in Section 5.1, we found that the

hyperparamters needed tuning to achieve the best result. In Fig. 5.17 we

plot the approximations found by DVTD with different choices of 𝜆 and �̄�.

It becomes apparent that DVTD benefits from having a more accurate

value function (i.e., higher 𝜆), but even with 𝜆 = 0 it can still produce a

credible estimate for the variance if �̄� is close to one. On the other hand,

with 𝜆 = 1 it seems to work reasonably well for any choice of �̄�. It produced
the best estimates when both bootstrapping hyperparameters were closer to

one, and was the least accurate when 𝜆 = �̄� = 0. Notably, it did not tend to

produce negative estimates except as a sort of ringing artifact near regions

of high variance.

For comparison, our attempts to use VTD for variance approximation

produced substantially worse results. We tried a variety of hyperparameter

settings19 and were unable to produce reasonable estimates. VTD’s approx-

imation for various 𝜆 and �̄� are plotted in Fig. 5.18.

No choice of bootstrapping lead to particularly good estimates, although

the spiral pattern was always somewhat in evidence. For most choices of �̄�
and 𝜆, VTD’s estimate was obviously incorrect for large portions of the state
space. This was most noticeable for states corresponding to the mountain’s

“base”, whose value tends to be the lowest (as it takes the most time to reach
18DVTD used a 30 × 30 = 900 NRBF grid, while the discretization had 64 × 64 = 4096

cells.
19Including varying the stepsize, although we don’t include those results here.
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Figure 5.17: Estimates for the variance of the return in Mountain Car, from DVTD
with different choices for 𝜆 and �̄�. With less bootstrapping (higher 𝜆 or �̄�), the
estimates become noticeably sharper.
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Figure 5.18: Estimates for the return’s variance in Mountain Car learned by VTD
under different choices for 𝜆 and �̄�. For display purposes, we clipped the estimates
to lie within [−2000, 5000]. The actual range observed was between −20000 and
25000.
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the goal from those states). This suggests that numerical instability was to

blame, with relatively small errors in the value or second moment estimates

leading to large errors when calculating variance20. Even in the best-case

scenario, with 𝜆 = �̄� = 0.9, VTD produced a somewhat reasonable result,

although it has noticeable ringing artifacts.

5.2.4 Summary

DVTD once again manages to produce creditable estimates for the variance

of the return. The estimates it produces are dependent on having a good

value function, requiring a bit of care when selecting 𝜆, although for 𝜆 = 0
it can still achieve a decent approximation so long as �̄� is relatively high.

While some hyperparameter settings were better than others, in none of

our experiments did we find DVTD to diverge or produce wildly incorrect

estimates. In contrast, VTD tended to be much less stable, and produced

worse estimates for the variance when compared to DVTD for the various

values of 𝜆 and �̄� we tested.

20For example, the states near the base of the mountain have values around −180, meaning
that (180 ± 9) spans 29241 to 35721, a spread of about 6000. The highest estimate for
variance across all states using any of the other methods we tried was around 1200, meaning
that a ±5% difference can cause VTD’s to over- or underestimate by five times the range of
the other approaches.
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CHAPTER 6

CONCLUSiONS & FUTURE WORK

We conclude this thesis with a summary of its contributions and a discussion

of some avenues for future research.

6.1 Summary

This thesis was motivated by the desire to extend reinforcement learning al-

gorithms to estimating quantities beyond the expected return while retaining

the advantages of temporal difference methods.

In Chapter 3, we outlined why learning more elaborate predictions might

be useful, with a particular focus on learning the moments of the return.

We described how estimates of the return’s moments could then be used to

predict functions of the return using Taylor series or parametric methods. In

the process, we generalized a TD-style algorithm for estimating the second

moment of the return to arbitrary higher moments.

We then turned our attention towards the problem of estimating the re-

turn’s second central moment, that is, the variance. A good estimate of the

return’s variance has numerous uses; however, the existing approaches came

with certain drawbacks. The second moment method, while attractive from

a theoretical standpoint, tends to suffer from numerical issues in practice. Al-

gorithms that learn to approximate the return’s distribution tend to require

substantially more computational resources relative to vanilla TD(λ).
112



To avoid those disadvantages, we instead sought to estimate the variance

directly. In Chapter 4, we described the 𝛿2-return, an approximation target

formed from the appropriately discounted sum of temporal difference errors.

We showed that given an accurate value function, the 𝛿2-return corresponds

to the variance of the return, and was in fact had the same expected value

as the targets used by the second moment methods. Additional analysis

explored the properties of this target when the value function is biased and

how it can be modified to approximate the variance of arbitrary 𝜆-returns, in
addition to the usual Monte Carlo return. Some of the results in this chapter

may be of independent interest for RL researchers.

We then described an algorithm (in Section 4.5) for learning the variance

using the 𝛿2-return using temporal difference methods, called Direct Vari-

ance Temporal Difference Learning, or DVTD. Similar to TD(λ), DVTD is

an efficient online learning algorithm, which allows the agent to learn an ap-

proximation of the return’s variance directly and in an incremental fashion.

Being based on TD(λ), it permits the use of eligibility traces, and can even

be used to estimate the variance of different λ-returns than the one targeted

by its value function approximator.

As DVTD is nonlinear, the usual contraction-based techniques for proving

convergence did not apply directly. In response to this issue, we showed

that a modified version of the algorithm that incorporates a projection step

can be proved convergent using the ODE method. This projection step is

generally unnecessary in practice, so the result indicates that the unmodified

version will not diverge in typical use. We sketch the convergence proof in

Section 4.6 and provide the complete result in Appendix A.

To validate our analysis and compare DVTD with alternatives, we then

performed a number of experiments in some simple domains focusing on the
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linear function approximation setting. The results of our experiments are

detailed in Chapter 5; however, the main findings can be summarized as

follows:

1. Across many different hyperparameter settings, DVTD is converges

more quickly relative to the equivalent second moment based algorithm

VTD or the distributional RL algorithm C51.

2. When increasing the stepsize or bootstrapping, DVTD never diverged

before VTD. As VTD is known to be convergent, this supports our con-

tention that DVTD is viable even without the projection step needed

in the convergence proof.

3. C51 exhibited exemplary stability at the expense of a much slower con-

vergence rate; however, when DVTD’s stepsize was reduced to produce

similarly stable estimates, DVTD still converged more quickly.

4. DVTD’s asymptotes provided better estimates of the return’s variance

compared to the alternatives we tested, even under function approxim-

ation.

5. DVTD produced reasonable estimates for the return’s variance across

all hyperparameter settings. In contrast, VTD was very sensitive to

the choice of bootstrapping. In the Mountain Car domain, VTD was

prone to estimating implausibly high or even negative values for the

variance of the return.

Further experiments in different domains or with different approximation

architectures are needed to test whether DVTD’s superior performance holds

in general, but the available evidence suggests that it is the best option for

estimating the return’s variance if one wishes to use temporal difference

methods.
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6.2 Future Work

The obvious directions for future work involve applying the variance of the re-

turn (and possibly the return’s higher moments) to improve the performance

of our agents.

Modifying Behavior Using Variance Estimates After developing an

algorithm for learning a value function, the next step is usually to apply

it towards policy improvement in the control setting. Variance might be

particularly useful here, as it can be used to enforce a notion of safety by

avoiding actions with high variance, or conversely, to guide exploration by

prioritizing high-variance policies. Some work in this vein (Jain, Khetarpal

and Precup 2018) has already demonstrated how the squared TD error can be

used as a proxy for the “controllability” of an agent, which the authors used

to tune a policy gradient algorithm referred to as Safe Option-Critic. They

found incorporating a penalty from 𝛿2 could improve the agent’s performance

relative to the baseline in a number of domains within the Arcade Learning

Environment. It seems likely that a similar algorithm making use of the full

𝛿2-return could further increase performance.

Higher Moment Estimation in Practice As discussed in Chapter 3,

sometimes the “natural” formulation of the return does not capture salient

aspects of the task. A better objective might be expressed as a function

of the return, which could be approximated using estimates of the return’s

moments.

Before this approach becomes practical we need to better characterize

algorithms for learning these higher moments; our experiments with VTD

suggest that further work is needed to achieve adequate stability and ac-
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curacy. We would seek to identify situations where these algorithms will

produce reliable estimates of the moments of the return and to determine

tighter performance bounds.

However, there is some indication that these higher moments can in fact

be useful. In the course of writing this thesis, we compared estimates of the

return’s distribution from C51 versus a normal approximation using DVTD’s

value and variance estimates. An example from the Tamar Chain environ-

ment is plotted in Fig. 6.1.
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C51 Normal Approximation

Figure 6.1: Estimates for the distribution of the return from a state (specifically,
State 2 in the Tamar Chain MDP) under linear function approximation. We used the
value and variance estimates from DVTD to approximate the return’s distribution as
a standard normal, comparing it with the distribution estimate found by C51.
The normal approximation is similar to C51’s estimate, but does not capture the
distribution’s left-tailedness and has a visibly different mode.

In this case the parametric approximation was not particularly accurate,

but this is to be expected given that C51 uses far more parameters and is

specifically designed to approximate distributions.

However, upon incorporating one additional moment (the skew), we found

that the parametric approximation improved significantly; a fitted skew nor-
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mal largely agrees with the distribution estimated by C51, as can be seen in

Fig. 6.2.
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Figure 6.2: The distribution of the return from a state (specifically, State 2 in the
Tamar Chain MDP), as estimated by C51 (under linear function approximation) and
a fitted skew-normal. Inset, we also provide the associated cumulative distribution
functions.
They show a surprising amount of agreement, with similar modes and appropriately
decaying tails. The estimated distribution from C51 has some concentration of probab-
ility mass at the left edge of the support, indicating that a portion of the returns were
more negative than could be represented.

This sort of accuracy might not be universally attainable (particularly if

the return distribution is multimodal) but it suggests that moment-based

methods could be competitive with the more elaborate distributional ap-

proach.

Alternatively, comparing the estimate for the variance from, say, DVTD

with the variance estimated by C51 would allow us to check that they are

performing properly. It might also be possible to accelerate distributional

algorithms by initializing them estimated distributions obtained from the

faster moment learning algorithms.
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APPENDiX A

DVTD CONVERGENCE DETAiLS

Here we present a more detailed version of DVTD’s convergence proof from

Section 4.6. We use the two-timescale convergence results from Borkar 2008,

described in Section 2.6, in particular Theorem 2.2. Essentially, we show

that a version of DVTD1 satisfies the conditions (𝓐. 2.1 to 2.9) of the general

convergence theorem, implying Theorem 4.6.

For Theorem 4.6 to hold, we had to make some initial assumptions, in par-

ticular that the transitions were sampled i.i.d. (𝓐. 2.2) from the on-policy

distribution and that the rewards and features were bounded2 (𝓐. 4.1). Fur-

thermore, we assume that the feature matrix 𝐗 ∈ R𝑁×𝑑 is full rank.

In terms of notation, we specify transitions as (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛), and we use 𝐱𝑛 ≝

𝐱(𝑠𝑛), 𝐱′
𝑛 ≝ 𝐱(𝑠′

𝑛), and 𝛾𝑛 ≝ 𝛾(𝑠′
𝑛). We use 𝛾 = max𝑠∈𝒮 𝛾(𝑠), to allow us to

simultaneously establish results for both the GVF and constant discounting

settings. Unless otherwise specified, we take ‖⋅‖ to be the Euclidean norm,

with ‖⋅‖𝐌 the weighted norm with respect to some matrix 𝐌3.

We also take for granted that the stepsize sequence is chosen appropriately

(𝓐. 2.3), with the TD component corresponding to the slow timescale and

identifying the DV component with the fast timescale. Additionally, the
1A summary of the various quantities involved is provided in Table A.1 (Page 130.
2With ‖𝐱(𝑠)‖ ≤ 𝐾𝑏 for all 𝑠 ∈ 𝒮 and |𝑟𝑛| < 𝐾𝑏 for 𝑛 ≥ 0.
3e.g., ‖𝐳‖𝐌 ≝ (𝐳⊤𝐌𝐳)1/2 = ‖𝐌𝐳‖.
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DVTD variant we analyze incorporates a projection step:

𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]), (4.59)

𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]), (4.60)

where 𝚼 ∶ R𝑑 → 𝐶 is a projection that restricts the iterates to a compact set

𝐶 ⊂ R𝑑 chosen such that it contains all possible equilbria for the associated

ordinary differential equations:

�̇� = 𝐠(𝛉) = −𝐀[𝛉 − 𝛉∗] = 𝐛 − 𝐀𝛉,
�̇� = 𝐡(𝛉, 𝐰) = −�̃�[𝐰 − 𝐰∗(𝛉)] = �̃�(𝛉) − �̃�𝐰.

If a point is an equilibrium in the unprojected system, then it remains an

equilibrium under projection. By employing a projection, we ensure that the

update equations (and their corresponding ODEs) will be Lipschitz, which

is immensely helpful for proving that (4.59) and (4.60) converge to a unique

solution4 We tacitly assume that the initial 𝛉0 and 𝐰0 are chosen to be within

𝐶 in order to streamline the exposition.

With the preceding in mind, we can then establish the truth of the remain-

ing assumptions.

Lemma A.1 (Bounded Iterates)

The iterates 𝛉𝑛 and 𝐰𝑛 are bounded in accordance with 𝓐. 2.7:

sup
𝑛

(‖𝐰𝑛‖ + ‖𝛉𝑛‖) ≤ ∞ a.s. (A.1)

PROOF (LEMMA A.1):

The bound is immediately evident due to the projection step. We defined

𝐾𝐶 ≝ sup𝐳∈𝐶 ‖𝐳‖, and since the updates in (4.59) and (4.60) are contained
4Further information on this strategy is available in Nagurney and Zhang 1996, Chapters

2-3; examples of applications in a reinforcement learning context can be found in Yu 2017;
Sutton, Maei et al. 2009.
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within 𝐶 for all 𝑛 ≥ 0, then we have

‖𝛉𝑛‖, ‖𝐰𝑛‖ ≤ 𝐾𝐶 < ∞ ∀ 𝑛 ≥ 0 (A.2)
■

For later convenience, we establish the positive definiteness of 𝐀 and �̃� as

the consequence of a more general result:

Lemma A.2 (Positive Definiteness of Update Matrices)

For 𝑘 ∈ N such that 𝑘 > 0, let 𝐀(𝑘) ∈ R𝑑×𝑑 be defined as:

𝐀(𝑘) ≝ 𝐗⊤𝐃(𝐈 − 𝐏𝚪(𝑘))𝐗, (A.3)

where 𝐏 ∈ R𝑁×𝑁 is an irreducible stochastic matrix, with stationary distri-

bution 𝐝, 𝐃 = diag(𝐝), and 𝚪 ∈ R𝑁×𝑁 is a diagonal matrix with 0 ≤ Γ𝑖𝑖 ≤ 1
which has at least one entry less than one.

If 𝐗 ∈ R𝑁×𝑑 is full rank, then 𝐀(𝑘) is positive definite.

PROOF (LEMMA A.2):

From our assumption that 𝐗 is full rank, we have for all 𝐲 ∈ R𝑑 that

𝐳 = 𝐗𝐲 ≠ 𝟎 unless 𝐲 = 𝟎. We can then observe that for any positive

definite matrix 𝐌: 𝐳⊤𝐌𝐳 = 𝐲⊤𝐗⊤𝐌𝐗𝐲 > 0 for 𝐲 ≠ 𝟎.

Therefore we just need to show that 𝐃(𝐈 − 𝐏𝚪(𝑛)) is positive definite.

This can be seen as a consequence of diagonal dominance (as in Sutton,

Mahmood and White 2015, pg. 6), stemming from the fact that 𝐏 is a

stochastic matrix, and for 𝑛 > 0, the matrix 𝐏𝚪(𝑛) is substochastic.

Thus 𝐀(𝑘) is positive definite for 𝑘 ∈ N, 𝑘 > 0. ■

Note that 𝐀(1) = 𝐀 and 𝐀(2) = �̃� are therefore both positive definite.

We will also make use of bounds on the TD error:
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Lemma A.3 (Bounding 𝛿(𝛉))
Assume 𝓐. 2.2 and 4.1 hold and that the TD component updates as in (4.59).

Let 𝐾𝐶 ≝ sup𝐳∈𝐶 ‖𝐳‖. Then:

|𝛿𝑛(𝛉)| = ∣𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱𝑛)⊤𝛉∣ ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖) ≤ 𝐾𝛿, (A.4)

where we define 𝐾𝛿 ≝ 𝐾𝑏 + (1 + 𝛾)𝐾𝑏𝐾𝐶

In addition, for the expected TD error vector, 𝛅(𝛉), we have:

‖𝛅(𝛉)‖𝐃 ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖𝐃) ≤ 𝐾𝛿. (A.5)

PROOF (LEMMA A.3):

The proof is simple given our assumptions. Starting from the definition,

|𝛿𝑛(𝛉)| = ∣𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱𝑛)⊤𝛉∣

≤ |𝑟𝑛| + ∣𝛾𝑛(𝐱′
𝑛)⊤𝛉∣ + ∣𝐱⊤

𝑛𝛉∣

≤ 𝐾𝑏 + 𝛾‖𝐱′
𝑛‖‖𝛉‖ + ‖𝐱𝑛‖‖𝛉‖

≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖),

(A.6)

from the bounds on the features and the rewards. Noting that 𝛉𝑛 ∈ 𝐶 for

all 𝑛 ≥ 0, we have 𝐾𝐶 ≥ ‖𝛉‖, and therefore:

|𝛿𝑛| ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖) ≤ 𝐾𝑏(1 + (1 + 𝛾)𝐾𝐶) = 𝐾𝛿 (A.7)

as claimed.

We can follow a similar procedure for the second part of the lemma:

‖𝛅(𝛉)‖𝐃 = ‖𝐫 + (𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃 ≤ ‖𝐫‖𝐃 + ‖(𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃. (A.8)

Observe that ‖𝐫‖ ≤ 𝐾𝑏; for the other term we have:

‖(𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃 ≤ ‖(𝐏𝚪 − 𝐈)𝐗‖‖𝛉‖𝐃 ≤ (‖𝐏𝚪𝐗‖ + ‖𝐗‖)‖𝛉‖𝐃

≤ (1 + 𝛾)𝐾𝑏‖𝛉‖𝐃 ≤ (1 + 𝛾)𝐾𝑏𝐾𝐶.
(A.9)
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Combining, we get the desired result:

‖𝛅(𝛉)‖𝐃 ≤ 𝐾𝑏 + (1 + 𝛾)𝐾𝑏𝐾𝐶 = 𝐾𝛿. (A.10)
■

Lemma A.4 (Slow Component Convergence)

The slow component �̇� = 𝐠(𝛉) = 𝐛−𝐀𝛉 has a globally asymptotically stable

equilibrium 𝛉∗, as required by 𝓐. 2.9.

PROOF (LEMMA A.4):

From Lemma A.2 we have that 𝐀 is positive definite. This implies that

it is invertible, and therefore that 𝛉∗ = 𝐀−1𝐛 exists; furthermore we can

write the ODE as �̇� = 𝐛 − 𝐀𝛉 = −𝐀(𝛉 − 𝛉∗). By assumption, 𝛉∗ ∈ 𝐶,

so now we just need to show that it is a globally asymptotically stable

equilibrium of (2.34).

This can be demonstrated in a number of ways, but perhaps the most im-

mediate is the Lipaunov method. Using 𝑉 (𝛉) = ‖𝛉 − 𝛉∗‖2 as our Liapunov

function, we have:

d𝑉
d𝑡 = ⟨∇𝛉𝑉 , �̇�⟩ =

𝑑
∑
𝑖=1

𝜕𝑉
𝜕𝜃𝑖

𝜕𝑔𝑖(𝛉) = −2(𝛉 − 𝛉∗)⊤𝐀(𝛉 − 𝛉∗), (A.11)

and since 𝐀 is positive definite, we have that ̇𝑉 (𝛉) < 0 for 𝛉 ≠ 𝛉∗ Clearly,

𝑉 (𝛉) > 0 for 𝛉 ≠ 𝛉∗, and 𝑉 (𝛉∗) = ̇𝑉 (𝛉∗) = 0, so 𝑉 (⋅) is a valid Liapunov

function for the slow component �̇�.

Then the equilibrium 𝛉∗ exists and is globally asymptotically stable. ■
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Lemma A.5 (Lipschitz Functions)

The functions 𝛅(2) ∶ R𝑑 → R𝑁 , �̃� ∶ R𝑑 → R𝑑, and 𝐰∗ ∶ R𝑑 → R𝑑 defined via:

𝛅(2)(𝛉) = E
𝜋
[𝛿2

𝑛(𝛉)],

�̃�(𝛉) = E
𝜋
[𝐱𝑛𝛿2

𝑛(𝛉)] = 𝐗⊤𝐃𝛅(2)(𝛉),

𝐰∗(𝛉) = �̃�−1�̃�(𝛉),

(A.12)

are Lipschitz on 𝐶.

PROOF (LEMMA A.5):

From the earlier Lemma A.3, we have that 𝛅 ∶ R𝑑 → R𝑁 is bounded on 𝐶
with ‖𝛿𝑛(𝛉)‖ ≤ 𝐾𝛿 for some 𝐾𝛿 ≥ 0. The function 𝛅(⋅) is actually itself

Lipschitz, since:

‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃 = ‖𝐫 + (𝐏𝚪 − 𝐈)𝐗𝛉1 − 𝐫 − (𝐏𝚪 − 𝐈)𝐗𝛉2‖𝐃

= ‖(𝐏𝚪 − 𝐈)𝐗(𝛉1 − 𝛉2)‖𝐃

≤ ‖(𝐈 − 𝐏𝚪)𝐗‖𝐃‖𝛉1 − 𝛉2‖𝐃

≤ (1 + 𝛾)𝐾𝑏 = 𝐾𝛿.

(A.13)

This can be used to demonstrate that 𝛅(2) is Lipschitz on 𝐶.

For 𝛅(2)
𝑛 ∶ R𝑑 → R𝑑, we have:

𝛿(2)
𝑛 (𝛉) = E

𝜋
[𝛿2

𝑛(𝛉)] = V
𝜋
[𝛿𝑛(𝛉)] + E

𝜋
[𝛿𝑛(𝛉)]2 = 𝜈2 + 𝛅2(𝛉) = 𝜈2 + 𝛅(𝛉) ∘ 𝛅(𝛉),

(A.14)

where we use 𝜈2 = V𝜋[𝛿𝑛(𝛉)], noting that it is constant given 𝓐. 2.2.

Therefore:

∥𝛅(2)(𝛉1) − 𝛅(2)(𝛉2)∥𝐃 = ∥𝛅2(𝛉1) − 𝛅2(𝛉2)∥𝐃

= ‖(𝛅(𝛉1) + 𝛅(𝛉2)) ∘ (𝛅(𝛉1) − 𝛅(𝛉2))‖𝐃

≤ ‖𝛅(𝛉1) + 𝛅(𝛉2)‖‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃

≤ 2𝐾𝛿‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃,

(A.15)
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where we use the fact that 𝛅 is bounded on 𝐶. Then we can see:

∥𝛅(2)(𝛉1) − 𝛅(2)(𝛉2)∥𝐃 ≤ 2𝐾𝛿‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃 ≤ 2𝐾2
𝛿 ‖𝛉1 − 𝛉2‖𝐃.

(A.16)

So 𝛅(2)(⋅) is Lipschitz on 𝐶.

This immediately implies that �̃�(⋅) and 𝐰∗(⋅) are also Lipschitz on 𝐶,

since they are both linear maps with respect to 𝛅(2). ■

Lemma A.6 (Fast Component Convergence)

The fast component �̇� = 𝐡(𝐰(𝑡), 𝛉) has a globally asymptotically stable

equilibrium that is a function of 𝛉, denoted 𝐰∗(𝛉), where 𝐰∗ ∶ R𝑑 → R𝑑 is

Lipschitz continuous.

PROOF (LEMMA A.6):

We know from Lemma A.5 that 𝐰∗(⋅) is Lipschitz on 𝐶, which suffices for

our purposes thanks to the projection step.

From Lemma A.2, we have that �̃� is positive definite and therefore

invertible, so 𝐰∗(𝛉) = �̃�−1�̃�(𝛉) is unique. By inspection, we can see that

�̇� = 𝐡(𝛉, 𝐰) = �̃� − �̃�𝐰 = 0 when 𝐰 = 𝐰∗. What remains is to show that

this equilibrium is globally asymptotically stable.

As it turns out, we can use the same reasoning as in Lemma A.4. Let

𝑉𝛉(𝐰) = ‖𝐰 − 𝐰∗(𝛉)‖2 be our Liapunov function for some (fixed) choice of

𝛉. It is obviously positive for 𝐰 ≠ 𝐰∗(𝛉), and 𝑉𝛉(𝐰∗(𝛉)) = ̇𝑉𝛉(𝐰∗(𝛉)) = 0.
Examining the derivative with respect to time, we see:

d𝑉𝛉
d𝑡 = ⟨∇𝐰𝑉𝛉, 𝐡(𝛉, 𝐰)⟩ = −2(𝐰 − 𝐰∗(𝛉))⊤�̃�(𝐰 − 𝐰∗(𝛉)) ≤ 0. (A.17)

It is in fact negative for 𝐰 ≠ 𝐰∗(𝛉) due to the aforementioned positive-

definiteness of �̃�.
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Therefore 𝐰∗(𝛉) is a unique globally asymptotically stable equilibrium

for �̇� = 𝐡(𝐰(𝑡), 𝛉) as claimed. ■

Lemma A.7 (Noise Bound)

The noise sequences {𝐌𝑛} and {𝐍𝑛} are bounded by some 𝐾𝑚 > 0 such

that:
E[‖𝐍𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],

E[‖𝐌𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2].
(A.18)

PROOF (LEMMA A.7):

We first establish bounds on the TD component’s noise.

‖𝐌𝑛+1‖ = ‖𝐱𝑛𝛿𝑛(𝛉𝑛) − (𝐛 − 𝐀𝛉𝑛)‖

≤ ∥𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱)⊤𝛉∥ + ‖𝐛 − 𝐀𝛉𝑛‖

≤ ‖𝐱𝑛‖(|𝑟𝑛| + 𝛾‖𝐱′
𝑛‖ + ‖𝐱𝑛‖)‖𝛉𝑛‖ + ‖𝐛‖ + ‖𝐀‖‖𝛉𝑛‖

≤ 𝐾2
𝑏 (1 + (1 + 𝛾)‖𝛉‖) + ‖𝐛‖ + ‖𝐀‖‖𝛉𝑛‖

= 𝐾2
𝑏 + ‖𝐛‖ + (𝐾2

𝑏 (1 + 𝛾) + ‖𝐀‖)‖𝛉‖,

(A.19)

where we used 𝓐. 4.1, which also guarantees that ‖𝐛‖ and ‖𝐀‖ are finite.
Let 𝐾𝑚 = max𝐾2

𝑏 + ‖𝐛‖, (𝐾2
𝑏 (1 + 𝛾) + ‖𝐀‖). Then:

‖𝐌𝑛+1‖ ≤ 𝐾𝑚(1 + ‖𝛉‖). (A.20)

From Young’s inequality, 𝑎𝑏 ≤ 𝑎𝑝/𝑝 + 𝑏𝑞/𝑞 for 𝑎, 𝑏 ≥ 0 and 𝑝, 𝑞 > 1 such

that 1/𝑝+1/𝑞 = 1. In particular, if 𝑝 = 𝑞 = 2, and 𝑎 = 1, we have 𝑏 ≤ 1+𝑏2
2 .

We can therefore see that:

‖𝐌𝑛+1‖2 ≤ 𝐾2
𝑚(1 + ‖𝛉‖)2 = 𝐾2

𝑚(1 + ‖𝛉‖2 + 2‖𝛉‖) ≤ 2𝐾2
𝑚(1 + ‖𝛉‖2),

(A.21)
■

which gives us a bound on ‖𝐌𝑛+1‖ similar to the lemma’s statement. Set-
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ting 𝐾𝑚 = 2𝐾2
𝑚 completes the proof.

A bound for ‖𝐍𝑛+1‖ in terms of ‖𝐰‖ can be derived in a similar manner

by following essentially the same steps and making use of Lemma A.3.

Lemma A.8 (Martingale Noise)

The noise sequences {𝐌𝑛+1} and {𝐍𝑛+1} are martingale difference sequences.

PROOF (LEMMA A.8):

We first show that {𝐌𝑛+1} and {𝐍𝑛+1} have expectation zero, which

follows from their definition and the i.i.d. assumption (𝓐. 2.2). We have:

𝐌𝑛+1 = 𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱)⊤𝛉𝑛) − 𝐛 − 𝐀𝛉𝑛 = 𝐱𝑛𝛿𝑛(𝛉𝑛) − 𝐠(𝛉𝑛).

(A.22)

Examining the expectation of 𝛿𝑛(𝛉𝑛)𝐱𝑛 yields:

E
𝜋
[𝐱𝑛𝛿𝑛] = E

𝜋
[𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′

𝑛 − 𝐱)⊤𝛉𝑛)]

= E
𝜋
[𝐱𝑛𝑟𝑛] + E

𝜋
[𝐱𝑛(𝛾𝑛𝐱′

𝑛 − 𝐱)⊤𝛉𝑛)]

= 𝐃𝐗⊤𝐫 + 𝐃𝐗⊤(𝚪𝐏𝐗 − 𝐗)𝛉𝑛

= 𝐛 − 𝐀𝛉𝑛,

(A.23)

and therefore:

E
𝜋
[𝐌𝑛+1] = E

𝜋
[𝐱𝑛𝛿𝑛] − (𝐛 − 𝐀𝛉𝑛) = 𝐛 − 𝐀𝛉𝑛 − (𝐛 − 𝐀𝛉𝑛). (A.24)

For 𝐍𝑛+1 the proof is basically identical and therefore omitted.

We can further note that Lemma A.7 implies that their expectations

are bounded with proportional to the iterates. Given that the iterates are

themselves bounded to be within 𝐶, we have that {𝐌𝑛+1} and {𝐍𝑛+1} are

bounded, and therefore square-integrable.

Therefore {𝐌𝑛+1} and {𝐍𝑛+1} are martingale difference sequences. ■
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The combination of the preceding results implies that the iterates from

(4.59) and (4.60) satisfy the conditions from Theorem 2.2 and therefore

(𝛉𝑛, 𝐰𝑛) → (𝛉∗, 𝐰∗(𝛉∗)) as 𝑛 → ∞.

DVTD ODE SUMMARY

TD(0) update 𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛾𝛉⊤
𝑛𝐱′

𝑛 − 𝛉⊤
𝑛𝐱𝑛]𝐱𝑛)

= 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]) (4.59)

DV update 𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[ ̃𝑟𝑛 + ̃𝛾𝐰⊤
𝑛𝐱′

𝑛 − 𝐰⊤
𝑛𝐱𝑛]𝐱𝑛)

= 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]) (4.60)

limiting ODE �̇� = 𝐠(𝛉) = 𝐛 − 𝐀𝛉 = −𝐀[𝛉 − 𝛉∗] (2.34)

�̇� = 𝐡(𝛉, 𝐰) = �̃�(𝛉) − �̃�𝐰 = −�̃�[𝐰 − 𝐰∗(𝛉)] (4.55)

martingale noise 𝐌𝑛+1 = [𝑟𝑛 + 𝛾𝛉⊤
𝑛𝐱′

𝑛 − 𝛉⊤
𝑛𝐱𝑛]𝐱𝑛 − [𝐛 − 𝐀𝛉𝑛] (2.37)

𝐍𝑛+1 = [ ̃𝑟𝑛 + ̃𝛾𝐰⊤
𝑛𝐱′

𝑛 − 𝐰⊤
𝑛𝐱𝑛]𝐱𝑛 − [�̃�(𝛉𝑛) − �̃�𝐰𝑛] (4.56)

related quantities 𝐀 = E𝜋,𝑑𝜋[𝐱𝑛(𝐱𝑛 − 𝛾𝐱′
𝑛)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝛾𝐏𝜋)𝐗 (2.35)

𝐛 = E𝜋,𝑑𝜋 [𝐱𝑛𝑟𝑛] = 𝐗⊤𝐃𝜋𝐫𝜋 (2.36)

�̃� = E𝜋,𝑑𝜋[𝐱𝑛(𝐱𝑛 − ̃𝛾𝐱′
𝑛)⊤] = 𝐗⊤𝐃𝜋(𝐈 − ̃𝛾𝐏𝜋)𝐗 (4.52)

�̃�(𝛉) = E𝜋,𝑑𝜋 [𝐱𝑛 ̃𝑟𝑛] = 𝐗⊤𝐃𝜋 ̃𝐫𝜋(𝛉) (4.53)

DV target ̃𝑟𝑛 = E𝜋[𝛿2
𝑛(𝛉)]

𝐰∗(𝛉) = �̃�−1�̃�(𝛉) (4.57)

projection operator 𝚼(𝐳) = argmin
�̂�∈𝐶

‖𝐳 − ̂𝐳‖ (4.58)

Table A.1: A summary of the various expressions for DVTD in the ODE framework.

130



APPENDiX B

C51 UNDER LiNEAR FUNCTiON

APPROXiMATiON

From the description of C51 (a distributional RL algorithm) provided by Belle-

mare, Dabney and Munos (2017), we show that the update equations actually

have a fairly simple form under linear function approximation.

C51 parameterizes distributions as taking on 𝑁 +1 possible discrete values,
equally spaced between 𝑧min and 𝑧max, with 𝑧𝑘 defined as:

𝑧𝑘 ≝ 𝑧min + 𝑘(𝑧max − 𝑧min
𝑁 ) = 𝑧min + 𝑘Δ𝑧, (B.1)

with Δ𝑧 = (𝑧max − 𝑧min)/𝑁 .

For every state 𝑠, it assigns a probability of the return taking on that value,
denoted 𝑝𝑖(𝑠), with ∑𝑁

𝑖=0 𝑝𝑖(𝑠) = 1 and 𝑝𝑖(𝑠) ≥ 0 for all 𝑖 ∈ {0, … , 𝑁} and

𝑠 ∈ 𝒮. Here, we are assuming linear function approximation, with a feature

function 𝜙 ∶ 𝒮 → R𝐾. Let 𝜃𝑖 be the parameters for the 𝑖-th unit. Then 𝑝𝑖(𝑠)
is defined as:

𝑝𝑖(𝑠) ≝ 𝑒𝜃⊤
𝑖 𝜙(𝑠)

∑𝑁
𝑗=0 𝑒𝜃⊤

𝑗 𝜙(𝑠) = 𝑒𝜃⊤
𝑖 𝜙(𝑠)

𝜎(𝑠) , (B.2)

where:

𝜎(𝑠) ≝
𝑁

∑
𝑗=0

𝑒𝜃⊤
𝑗 𝜙(𝑠). (B.3)

Regarding the parameters as a weight matrix Θ ∈ R𝑁+1×𝐾 allows us to write:
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𝐩(𝑠) = 1
𝜎(𝑠)𝑒Θ𝜙(𝑠) (B.4)

C51 updates from samples of the distribution, which entails a sampled Bell-

man operator ̂𝑇 . For a sample (𝑠, 𝑟, 𝑠′), it is defined as:

̂𝑇 𝑧𝑗 ≝ 𝑟 + 𝛾𝑧𝑗. (B.5)

In order to form the loss function, C51 projects arbitrary distributions onto

the supported values {𝑧0, 𝑧1, … , 𝑧𝑁} using the Cramér projection (denoted

Π𝐶). The projected update is denoted 𝐦(𝑠, 𝑠′) ∈ R𝑁+1, with 𝑚𝑖(𝑠, 𝑠′) given
by:

𝑚𝑖(𝑠, 𝑠′) ≝ [Π𝐶 ̂𝑇 𝑍(𝑠)]𝑖 =
𝑁

∑
𝑗=0

[1 −
∣[ ̂𝑇 𝑧𝑗]𝑧max𝑧min − 𝑧𝑖∣

Δ𝑧 ]
1

0
𝑝𝑗(𝑠′), (B.6)

where [𝑥]𝑏𝑎 denotes that 𝑥 is “clipped” to be within [𝑎, 𝑏], that is:

[𝑥]𝑏𝑎 ≝ min(𝑏,max(𝑎, 𝑥)). (B.7)

The loss used in (Bellemare, Dabney and Munos 2017) was the cross-entropy

loss:

ℒ ≝
𝑁

∑
𝑖=0

𝑚𝑖(𝑠, 𝑠′) log 𝑝𝑖(𝑠). (B.8)

Treating 𝑚𝑖(𝑠, 𝑠′) as independent of Θ (as in TD learning) we get the semi-

gradient:

∇Θℒ = −
𝑁

∑
𝑖=0

𝑚𝑖∇Θ log 𝑝𝑖. (B.9)

Hereafter we stop specifying the state (i.e. use 𝑚𝑖 and 𝑝𝑖 in place of 𝑚𝑖(𝑠, 𝑠′)
and 𝑝𝑖(𝑠)) where the meaning is clear.

Differentiating with respect to a single weight, we get:

𝜕 log 𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

log(𝑒𝜃⊤
𝑖 𝜙

𝜎 ) = 𝜎
𝑒𝜃⊤

𝑖 𝜙
𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

. (B.10)

132



Further differentiation reveals:

𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

𝑒𝜃⊤
𝑖 𝜙

𝜎 = 1
𝜎

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
− 𝑒𝜃⊤

𝑖 𝜙

𝜎2
𝜕𝜎

𝜕𝜃𝑎𝑏
. (B.11)

For the first term, we have:

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
= 𝛿𝑖𝑎𝜙𝑏𝑒𝜃⊤

𝑖 𝜙, (B.12)

where define 𝛿𝑖𝑗 (the Kronecker delta) via:

𝛿𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗

0 otherwise
(B.13)

Evaluating the second term gives:

𝜕𝜎
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

∑
𝑗

𝑒𝜃⊤
𝑗 𝜙 = ∑

𝑗

𝜕
𝜕𝜃𝑎𝑏

𝑒𝜃⊤
𝑗 𝜙 = ∑

𝑗
𝛿𝑗𝑎𝜙𝑏𝑒𝜃⊤

𝑗 𝜙 = 𝜙𝑏𝑒𝜃⊤
𝑎𝜙, (B.14)

so altogether we have:

𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= 1
𝜎

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
− 𝑒𝜃⊤

𝑖 𝜙

𝜎2
𝜕𝜎

𝜕𝜃𝑎𝑏
= 𝛿𝑖𝑎𝜙𝑏𝑒𝜃⊤

𝑖 𝜙

𝜎 − 𝜙𝑏𝑒𝜃⊤
𝑖 𝜙𝑒𝜃⊤

𝑎𝜙

𝜎2

= 1
𝜎2 𝜙𝑏𝑒𝜃⊤

𝑖 𝜙(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤
𝑎𝜙)

(B.15)

Returning to the original derivative, we get:

𝜕 log 𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜎
𝑒𝜃⊤

𝑖 𝜙
𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= ( 𝜎
𝑒𝜃⊤

𝑖 𝜙 )( 1
𝜎2 𝜙𝑏𝑒𝜃⊤

𝑖 𝜙(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤
𝑎𝜙))

= 1
𝜎𝜙𝑏(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤

𝑎𝜙)
(B.16)
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Now, to compute the gradient for the loss, we have to take the sum:

𝜕ℒ
𝜕𝜃𝑎𝑏

= −
𝑁

∑
𝑖=0

𝑚𝑖
𝜕 log 𝑝𝑖

𝜕𝜃𝑎𝑏
= −

𝑁
∑
𝑖=0

𝑚𝑖𝜙𝑏
𝜎 (𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤

𝑎𝜙)

= 𝜙𝑏(
𝑒𝜃⊤

𝑎𝜙

𝜎
𝑁

∑
𝑖=0

𝑚𝑖 −
𝑁

∑
𝑖=0

𝑚𝑖𝛿𝑖𝑎)

= 𝜙𝑏(𝑝𝑎
�
�
��>

1
∑

𝑖
𝑚𝑖 − 𝑚𝑎)

= 𝜙𝑏(𝑝𝑎 − 𝑚𝑎),

(B.17)

where we use the fact that the 𝑚𝑖 sum to one, since 𝐦 represents a probability

distribution. The matrix version of the above is just:

∇𝜃ℒ = (𝐩 − 𝐦)𝜙⊤. (B.18)
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APPENDiX C

ALGORiTHM LiSTiNG
Algorithm 1: Linear TD(λ)
Linear TD(λ) learns a value function for a policy 𝜋 using linear function approximation.
Its value function is ̂𝑣 ∶ 𝒮 → R with ̂𝑣 = 𝛉⊤𝜙(𝑠), where 𝜙 ∶ 𝒮 → R𝑛 is the function
that maps states to features. As the agent learns, its value function becomes closer
to the true value of the policy, that is, ̂𝑣(𝑠) ≈ 𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]
1 initialize(𝜋, 𝜙, 𝛼, 𝛾, 𝜆):

▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, the learning rate, either constant or specified as a sequence {𝛼}𝑡

▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function

2 Initialize 𝛉 ∈ R𝑛 arbitrarily
3 Allocate eligibility trace vector 𝐳 ∈ R𝑛

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector

10 reset():
11 Set 𝐳 ∈← 𝟎, for 𝐳 ∈ R𝑛 ▷ clear eligibility traces

12 learn(episodes):
13 for each episode do
14 reset() ▷ Get ready for episode start
15 Get 𝑠, the start state for the episode
16 while 𝑠 is not terminal do
17 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
18 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

19 update(𝑠, 𝑎, 𝑟, 𝑠′)
20 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

21 return ̂𝑣 ∶ 𝑠 ↦ 𝛉⊤𝜙(𝑠)
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Algorithm 2: Linear DVTD(λ)
Linear DVTD(λ) learns a value function ( ̂𝑣 ∶ 𝒮 → R) and a variance function (�̂� ∶ 𝒮 →
R) for a policy 𝜋 using linear function approximation. As the agent learns, its value
function becomes closer to the true value function; as the value function becomes more
accurate ( ̂𝑣 ≈ E𝜋[𝐺𝜆

𝑡 |𝑆𝑡 = 𝑠]), the variance function becomes a better approximation
of the variance of the λ-return, i.e. �̂�(𝑠) ≈ E𝜋[(𝐺𝜆

𝑡 − ̂𝑣(𝑠))2|𝑆𝑡 = 𝑠].
1 initialize(𝜋, 𝜙, 𝛼, ̃𝛼, 𝛾, 𝜆, �̃�):

▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, value learning rate, either constant or specified as a sequence {𝛼}𝑡

▷ �̃�, variance learning rate, either constant or specified as a sequence {�̃�}𝑡

▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function for the value learner
▷ �̃� ∶ 𝒮 → [0, 1] is the bootstrapping function for the variance learner

2 Initialize 𝛉 ∈ R𝑛 arbitrarily ▷ value estimator weights
3 Initialize 𝐰 ∈ R𝑛 arbitrarily ▷ variance estimator weights

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector for ̂𝑣

10 ̃𝑟 ← 𝛿2 ▷ ”reward” for DV component
11 ̃𝛾 ← (𝛾(𝑠′)𝜆(𝑠′))2

12 ̃𝛿 ← ̃𝑟 + ̃𝛾𝐰⊤𝐱′ − 𝐰⊤𝐱
13 ̃𝐳 ← ̃𝛾�̃�(𝑠′) ̃𝐳 + 𝐱
14 𝐰 ← ̃𝛼 ̃𝛿 ̃𝐳 ▷ update weight vector for variance

15 reset():
16 Set 𝐳 ∈← 𝟎, for 𝐳 ∈ R𝑛

17 Set ̃𝐳 ← 𝟎, for ̃𝐳 ∈ R𝑛 ▷ clear eligibility traces

18 learn(episodes):
19 for each episode do
20 reset() ▷ Get ready for episode start
21 Get 𝑠, the start state for the episode
22 while 𝑠 is not terminal do
23 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
24 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

25 update(𝑠, 𝑎, 𝑟, 𝑠′)
26 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

27 return ̂𝑣 ∶ 𝑠 ↦ 𝛉⊤𝜙(𝑠)
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Algorithm 3: Linear VTD(λ)
Linear VTD(λ) learns a value function, ̂𝑣 ∶ 𝒮 → R, and an estimate for the second moment,
̂𝑣(2) ∶ 𝒮 → R. As the agent learns, its value function better approximates the λ-return, so

that ̂𝑣(𝑠) → E𝜋[𝐺𝜆
𝑡 |𝑆𝑡 = 𝑠], and ̂𝑣(2) goes to ̂𝑣(2)(𝑠) ≈ E𝜋[(𝐺𝜆

𝑡 )2|𝑆𝑡 = 𝑠].

1 initialize(𝜋, 𝜙, 𝛼, ̃𝛼, 𝛾, 𝜆, �̃�):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, value learning rate, either constant or specified as a sequence {𝛼}𝑡

▷ �̃�, SM learning rate, either constant or specified as a sequence {�̃�}𝑡

▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function for the value learner
▷ �̃� ∶ 𝒮 → [0, 1] is the bootstrapping function for the second moment learner

2 Initialize 𝛉 ∈ R𝑛 arbitrarily ▷ value estimator weights
3 Initialize 𝐰 ∈ R𝑛 arbitrarily ▷ second moment estimator weights

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector for ̂𝑣

10 ̃𝑟 ← 𝑟2 + 2𝛾(𝑠′)𝑟𝛉⊤𝐱′ ▷ “reward” for SM component
11 ̃𝛾 ← (𝛾(𝑠′)𝜆(𝑠′))2

12 ̃𝛿 ← ̃𝑟 + ̃𝛾𝐰⊤𝐱′ − 𝐰⊤𝐱
13 ̃𝐳 ← ̃𝛾�̃�(𝑠′) ̃𝐳 + 𝐱
14 𝐰 ← ̃𝛼 ̃𝛿 ̃𝐳 ▷ update weight vector for variance

15 reset():
16 Set 𝐳 ← 𝟎, for 𝐳 ∈ R𝑛 ▷ clear eligibility traces
17 Set ̃𝐳 ← 𝟎, for ̃𝐳 ∈ R𝑛

18 learn(episodes):
19 for each episode do
20 reset() ▷ Get ready for episode start
21 Get 𝑠, the start state for the episode
22 while 𝑠 is not terminal do
23 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
24 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

25 update(𝑠, 𝑎, 𝑟, 𝑠′)
26 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

27 return ̂𝑣(2) ∶ 𝑠 ↦ 𝐰⊤𝜙(𝑠) − (𝛉⊤𝜙(𝑠))2
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Algorithm 4: Moment TD(𝜆)
1 input: the policy 𝜋 to be evaluated
2 input: a set of 𝑛 differentiable functions {𝑣𝑖}𝑛

𝑖=1 parameterized by their
respective weights {𝐰}𝑛

𝑖=1 with 𝐰𝑖 ∈ R𝑑, such that 𝑣𝑖 ∶ 𝒮 → R and
𝑣𝑖(terminal) = 0.

3 parameter: a set of stepsizes {𝛼𝑖}𝑛
𝑖=1 with 𝛼𝑖 ∈ (0, 1);

4 parameter: a set of trace decay rates {𝜆}𝑛
𝑖=1 with 𝜆𝑖 ∈ [0, 1].

5 foreach 𝑘 = 1, … , 𝑛 do Initialize 𝐰𝑘 arbitrarily
6 for each episode do
7 Initialize 𝑠 ▷ Initial state
8 foreach 𝑘 = 1, … , 𝑛 do 𝐳𝑘 ← 𝟎 ▷ set traces to zero
9
10 while 𝑠 is not terminal do
11 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
12 Take action 𝑎, observe 𝑟, 𝑠′

13 for 𝑘 = 𝑛, … , 1 do
14 𝑟𝑘 ← ∑𝑘−1

ℓ=0 (𝑘
ℓ)𝛾ℓ𝑟𝑘−ℓ𝑣ℓ(𝑠′) ▷ “reward” from (3.25)

15 𝐳𝑘 ← 𝛾𝑘𝜆𝑘 + ∇𝑣𝑘(𝑠)
16 𝛿 ← 𝑟𝑘 + 𝛾𝑘𝑣𝑘(𝑠′) − 𝑣𝑘(𝑠)
17 𝐰𝑘 ← 𝐰𝑘 + 𝛼𝑘𝛿𝐳𝑘
18 𝑠 ← 𝑠′
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Algorithm 5: Linear C51 (Categorical Distributional RL)
The C51 algorithm learns to assign probabilities to returns, rather than just learning the expected value
of the return. It does this by parameterizing the return distribution as taking on 𝐾 possible values,
equally spaced between 𝑍min and 𝑍min. With each transition sample (𝑠, 𝑎, 𝑟, 𝑠′), the algorithm samples
from the (approximate) distribution of future returns using, projects it onto the categorical support, and
then updates the estimate of the distribution of 𝑠 by comparing the two. The approximate distribution
can then be used to estimate the expected return or its variance, among other things.
We have modified the algorithm described in Bellemare, Dabney and Munos 2017 (Algorithm 1, pg. 6)
to be more self-contained and to explicitly use linear function approximation.

1 initialize(𝜋, 𝜙, 𝛼, 𝛾, 𝐾, 𝑍min, 𝑍max):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝐱 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, learning rate, either constant or specified as a sequence {𝛼}𝑡

▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝐾 ∈ N+ is the number of “atoms” in the categorical distribution
▷ 𝑍min is the minimum value the categorical distribution supports
▷ 𝑍max is the maximum value the categorical distribution supports

2 Initialize 𝐖 ∈ R𝐾×𝑛 arbitrarily, e.g. to all ones. ▷ distribution estimator weights
3 Set Δ𝑧 ← (𝑍max−𝑍min

𝐾 ) ▷ spacing between atoms
4 Initialize 𝐳 ∈ R𝐾 such that 𝑧𝑖 = 𝑍min + (𝑖 − 1)Δ𝑧 ▷ distribution support

5 compute_distribution(s):
6 𝐚 ← exp {𝐖𝐱(𝑠)}
7 return 𝐚

‖𝐚‖1
▷ vector sigmoid function

8 update(𝑠, 𝑎, 𝑟, 𝑠′):
9 𝐩 ← compute_distribution(s)
10 𝐩′ ← compute_distribution(s’) ▷ get distribution estimates for 𝑠 and 𝑠′

11 𝒯𝐳 ← [𝑟 + 𝛾(𝑠′)𝐳]𝑍max
𝑍min

▷ sample (clipped) distributional Bellman operator
12 𝐦 ← 𝟎 ▷ 𝐦 ∈ R𝐾 will be 𝐩′ projected onto the supported values
13 for 𝑖 = 1, 2, … , 𝐾 do
14 for 𝑗 = 1, 2, … , 𝐾 do
15 𝑚𝑖 ← 𝑚𝑖 + 𝑝′

𝑗 [1 − |[𝒯𝑧]𝑗|
Δ𝑧 ]

1

0

16 𝐖 ← 𝐖 − 𝛼(𝐩 − 𝐦)𝐱⊤ ▷ update weights

17 learn(episodes):
18 for each episode do
19 Get 𝑠, the start state for the episode
20 while 𝑠 is not terminal do
21 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
22 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

23 update(𝑠, 𝑎, 𝑟, 𝑠′)
24 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

25 return ̂𝑧 ∶ 𝑠 ↦ Dist(𝐳) ▷ A function mapping states to distributions
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