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Abstract

We present AlphaChute: a state-of-the-art algorithm that achieves superhuman per-
formance in the ancient game of Chutes and Ladders. We prove that our algorithm
converges to the Nash equilibrium in constant time, and therefore is—to the best of
our knowledge—the first such formal solution to this game. Surprisingly, despite
all this, our implementation of AlphaChute remains relatively straightforward due
to domain-specific adaptations. We provide the source code for AlphaChute here
in our Appendix.
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1 Introduction

Deep Learning by Geoffrey Hinton2 has recently seen an explosion of popularity in both the academic
and neo-colonialist communities. It has enjoyed considerable success in many important problems.3
Despite this—to the best of our knowledge4—it has yet to be applied to the ancient Indian game of
Moksha Patam (see Figure 1), colloquially referred to by the uninitiated as Chutes and Ladders or

2according to several random people we asked, this is shown by one of the following works: Hinton et al.
[1990, 1998], Neal and Hinton [1998], Fahlman et al. [1983], Guan et al. [2018], Hinton [2000], McDermott and
Hinton [1986], Kiros et al. [2018], Frosst and Hinton [2017a], Brown and Hinton [2001a], Carreira-Perpiñán
and Hinton [2005], Hinton et al. [2005], Heess et al. [2009], Fels and Hinton [1995], Hinton and van Camp
[1993], Deng et al. [2020a], Memisevic and Hinton [2007], Ranzato and Hinton [2010], Ranzato et al. [2011],
Susskind et al. [2011], Tang et al. [2012a], Taylor et al. [2010], Frey and Hinton [1996], Hinton [1976], Sloman
et al. [1978], Deng et al. [2020b], Mnih and Hinton [2010], Krizhevsky and Hinton [2011], Yuecheng et al.
[2008], Zeiler et al. [2009], Oore et al. [2002a], Hinton et al. [2011], Nair et al. [2008], Welling and Hinton
[2002], Dahl et al. [2013], Deng et al. [2013], Graves et al. [2013a], Jaitly and Hinton [2011], Mohamed and
Hinton [2010], Mohamed et al. [2012b, 2011], Sarikaya et al. [2011], Waibel et al. [1988], Zeiler et al. [2013],
Anil et al. [2018a], Hinton et al. [2018], Pereyra et al. [2017a], Qin et al. [2020b], Shazeer et al. [2017a], Chan
et al. [2020a], Chen et al. [2020a], Frosst et al. [2019a], Kornblith et al. [2019a], Mnih and Hinton [2007, 2012],
Nair and Hinton [2010], Paccanaro and Hinton [2000a], Salakhutdinov et al. [2007], Sutskever et al. [2013,
2011], Tang et al. [2012b,c, 2013], Taylor and Hinton [2009a], Tieleman and Hinton [2009], Yu et al. [2009],
Hinton [2005, 1981a,b], Hinton and Lang [1985], Touretzky and Hinton [1985], Paccanaro and Hinton [2000b],
Fels and Hinton [1990], Deng et al. [2010], Jaitly and Hinton [2013], Jaitly et al. [2014], Ba et al. [2016a],
Bartunov et al. [2018b], Becker and Hinton [1991], Brown and Hinton [2001b], Chen et al. [2020c], LeCun et al.
[1988], Dahl et al. [2010], Dayan and Hinton [1992], Eslami et al. [2016b], Fels and Hinton [1994], Frey et al.
[1995], Galland and Hinton [1989], Ghahramani and Hinton [1997], Goldberger et al. [2004], Grzeszczuk et al.
[1998a], Hinton and Brown [1999], Hinton et al. [1999], Hinton and McClelland [1987], Hinton and Nair [2005],
Hinton and Roweis [2002], Hinton and Revow [1995], Hinton et al. [1994, 2003, 1991], Hinton and Zemel
[1993], Kosiorek et al. [2019a], Krizhevsky et al. [2012], Lang and Hinton [1989], Larochelle and Hinton [2010],
Mayraz and Hinton [2000], Memisevic and Hinton [2004], Memisevic et al. [2010], Mnih and Hinton [2008],
Müller et al. [2019a], Nair and Hinton [2008, 2009], Nowlan and Hinton [1990, 1991], Osindero and Hinton
[2007], Paccanaro and Hinton [2001a], Palatucci et al. [2009], Ranzato et al. [2010b], Roweis et al. [2001],
Sabour et al. [2017a], Salakhutdinov and Hinton [2007a, 2009a, 2012a], Sallans and Hinton [2000], Schmah
et al. [2008], Sutskever and Hinton [2008a], Sutskever et al. [2008], Taylor et al. [2006], Teh and Hinton [2000],
Ueda et al. [1998], Vinyals et al. [2015], Welling et al. [2002a, 2004a, 2002b], Williams et al. [1994], Xu et al.
[1994], Zemel and Hinton [1990, 1993], Zemel et al. [1989], Zhang et al. [2019a], Hinton [1987], Grzeszczuk
et al. [1998b, 1997], Hinton [2020], Hinton and Teh [2001], Mnih et al. [2011], Srivastava et al. [2013a], Taylor
and Hinton [2009b], Welling et al. [2003], Paccanaro and Hinton [2001b], Hinton [1989a, 1990a,b], Pirri et al.
[2002], Hinton [2011], Krizhevsky et al. [2017], Oore et al. [2002b], Frey and Hinton [1997], Ackley et al.
[1985], Hinton [2014, 1979], Hinton et al. [2006b], Touretzky and Hinton [1988], Hinton and Nowlan [1987],
Fahlman and Hinton [1987], Mnih et al. [2012], Taylor and Hinton [2012], Tang et al. [2012d], Hinton et al.
[2012], Welling et al. [2012], Hinton and Teh [2013], Graves et al. [2013b], Sabour et al. [2017b], Frosst and
Hinton [2017b], Anil et al. [2018b], Bartunov et al. [2018a], Frosst et al. [2018, 2019b], Kornblith et al. [2019b],
Deng et al. [2019b], Gomez et al. [2019], Müller et al. [2019b], Kosiorek et al. [2019b], Qin et al. [2019], Zhang
et al. [2019b], Deng et al. [2019a], Jeruzalski et al. [2019], Müller et al. [2020], Chen et al. [2020b], Qin et al.
[2020a], Chan et al. [2020b], Agarwal et al. [2020], Chen et al. [2020d], Raghu et al. [2020], Sabour et al. [2020],
Sun et al. [2020], Ba et al. [2016b,c], Eslami et al. [2016a], Guan et al. [2017], Hinton et al. [2015], Le et al.
[2015], Pereyra et al. [2017b], Shazeer et al. [2017b], Srivastava et al. [2013b], Vinyals et al. [2014], Williams
et al. [1997], Salakhutdinov and Hinton [2009b], Ranzato et al. [2015], Mnih et al. [2009], Cook et al. [2007],
Ranzato et al. [2010a], Salakhutdinov and Hinton [2007b, 2009c], Sallans and Hinton [2004], Srivastava et al.
[2014], Sutskever and Hinton [2007], Taylor et al. [2011], Teh et al. [2003], van der Maaten and Hinton [2012],
LeCun et al. [2015], Becker and Hinton [1993], Dayan and Hinton [1997], Dayan et al. [1995], Frey and Hinton
[1999], Ghahramani and Hinton [2000], Hinton [2002, 1989b], Hinton and Nowlan [1990], Hinton et al. [2006a],
Jacobs et al. [1991], Memisevic and Hinton [2010], Nowlan and Hinton [1992], Oore et al. [1997], Osindero
et al. [2006], Salakhutdinov and Hinton [2012b], Schmah et al. [2010], Sutskever and Hinton [2008b], Ueda
et al. [2000a], Zemel and Hinton [1995], Dayan and Hinton [1996], Lang et al. [1990], Memisevic and Hinton
[2005], Sutskever and Hinton [2010], Mayraz and Hinton [2002], Ranzato et al. [2013], Revow et al. [1996],
Tibshirani and Hinton [1998], Hinton [2007, 2009], Mohamed et al. [2012a], Sarikaya et al. [2014], Yu et al.
[2012], Nowlan and Hinton [1993], Paccanaro and Hinton [2001c], Fels and Hinton [1993, 1997, 1998], Hinton
et al. [1997], Welling et al. [2004b], Hinton and Salakhutdinov [2011], Waibel et al. [1989], Ueda et al. [2000b],
Hinton [1977, 2010a,b, 2017a,b, 2012]

3see https://www.google.com/search?q=deep+learning++successes
4see the leaderboard for “Literature Review — Any%”, where the authors hold the world record as of

publication time
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Figure 1: Chutes and Ladders and Monopoly (almost shown here) have many important similarities.
Both use game boards made from cardboard, exist in the material world, and can be viewed as
criticisms of capitalism.

Snakes and Ladders. This is particularly surprising as Moksha Patam was primarily used to teach
kids morality5—an undeniably desirable trait for any artificial general intelligence.

The relevance of Chutes and Ladders as a artificial intelligence research topic dates back to a high-
stakes gamble held during the second Dartmouth Conference, wherein an unnamed researcher of
Quebecois extraction won the province of Ontario for Quebec in a wager against then Canadian Prime
Minister, Jean Chrétien. The game, of course, was Chutes and Ladders. In order to preserve Yann
LeCun’s territorial gains, the field has actively worked towards developing learning agents capable of
playing the game in preparation for the next artificial intelligence summit. This work is a continuation
of this tradition.

This work is offered as a step forwards in the field. Here, we contribute to the field of artificial
intelligence by

• presenting AlphaChute, which is the first algorithm to achieve superhuman performance in
Chutes and Ladders, and

• proving that this algorithm is a solution to the game by showing that it converges to the Nash
equilibrium in constant time.

Our work can be seen as one step in a long line of similar research. Or it might not be. We didn’t
check. Either way it contains new experiments so it’s roughly as novel as much modern work in
artificial intelligence. While some misinformed and obstinate reviewers may disagree with this, we
preemptively disagree with them.

This paper is organized into a finite number of sections comprised of content. We start by providing a
motivation for this work in Section 2. We go on to describe the methods used in Section 3. Afterwards,
we describe our results in Section 4 and the discuss them in Section 5. After that, we talk about the
broad impact of this work in Section 6, the broader impact in Section 7, and the broadest impact in
Section 8. Finally, we conclude in Section 9 and discuss future work in Section 10.

5Wikipedia contributors [2021]
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2 Motivation

Do it
Just do it

Don’t let your dreams be dreams
Yesterday you said tomorrow
So just do it
Make your dreams come true
Just do it

Some people dream of success
While you’re gonna wake up and work hard at it
Nothing is impossible

You should get to the point
Where anyone else would quit
And you’re not going to stop there
No, what are you waiting for?

Do it
Just do it
Yes you can
Just do it
If you’re tired of starting over
Stop giving up

3 Methods

Something something Deep Learning.6

4 Results

As is the standard in the field currently, we swept over one hundred seeds and reported the top five
results for our method. This paints a realistic picture of how our method would be used in real-world
scenarios. The performance of our method under this training paradigm is shown in Figure 2. Clearly,
our method outperforms both the best animal player. This is—to the best of our knowledge—the first
concrete example where an artificial intelligence has beaten an animal in Chutes and Ladders.

Figure 2: The win-rate of AlphaChute against the best animal player.

6looKS GoOd, But wHEre is thE MENtiOn oF TREE SEarCH? —Reviewer 2
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Figure 3: Performance of the best available agent for Chutes and Ladders over time. To accurately
estimate future performance, we fitted the data with a fifteenth degree polynomial, because our
astrologist recommended it, and it makes the line look like a snake.

5 Discussion

We found that initially, the agent was too shy to play the game. We fixed this by updating the
agent more with games it won by using prioritized experience replay, which improved the agent’s
self-esteem and thus performance in the game. However, using this prioritized replay memory caused
the agent’s ego to grow too large. Once the agent realized it was not as good as it believed itself to be,
the agent fell into a deep depression and lost all motivation to play the game. The occurrence of this
phenomenon concurs with previous results about making agents gloomy by only punishing them.7

In traditional self-play training, the agent learns to play the game by playing against itself. We found
this strictly demotivating for the agent (why would you want to beat yourself?). Instead, we let the
agent play both players at the same time. This way, no matter what, the agent won the game and was
able to receive positive feedback. This training paradigm improves on earlier approaches, such as
“Follow the Regularized Mamba” or “Exponentially Multiplicative Adders”.

Finally, while some reviewers of early versions of this paper objected to the notion of performing a
search over random seeds, we hypothesize that those buffoons were motivated by jealousy and anger
after losing repeatedly to AlphaChute. After all, it is a well-established fact that skill looks like luck
to the unlucky.

5.1 Convergence to Nash Equilibrium

As Chutes and Ladders only has one action, the proof of convergence to the Nash equilibrium in
constant time is trivial and therefore left as an exercise for the reviewers. Who—given their comments
on this work—clearly need the practice.8

5.2 Regret Bounds

Due to stochasticity, we cannot use the standard methods for bounding bandit algorithms by “forming
a posse, looping around, heading them off at the pass, and engaging in a shoot-out at the ol’ mining
station”. So instead we conjured up visions of the hidden horrors in the dark corners of the abyss
until we confirmed that regret is truly a boundless concept.

7Olkin [2020]
8looking at you, Reviewer 2
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Figure 4: Illustration of the similar features shared by Chutes and Ladders and the anatomy of
endoskeletal vertebrates—in this case, a human. (A) Ladder-like structure comprised of calcium
matrix. (B) Chute-resembling organic toroid used and enjoyed by many wonderful animals. Note that
the superimposed text and drawings in neon green were added digitally, and are not usually present
without heavy Tide Pod™ consumption.

6 Broad Impact

Beyond the deeply satisfying prospect of developing an algorithm that can just CRUSH children
and adolescents at board games, AlphaChute can be extended to solve problems in some surprising
domains. By running our algorithm continuously in our offices on Asteroid 8837, we achieved
statistically significant (p = 0.5) temperature increases in the surrounding environment. This
suggests the possibility of using a variant of this algorithm to combat the effects of global cooling.
We believe that a highly parallelized version incorporating thousands of GPUs could be used to make
human habitation of our office in London, Ontario, Quebec practically feasible.

We also identified possible medical applications by looking at the correspondence between Chutes and
Ladders and mammalian anatomy through recreational Tide Pod™ ingestion.9 As shown in Figure 4,
it is possible to define a bijective mapping between a game board and the interior components of
organic constructs using online image editing services.

7 B r o a d e r I m p a c t

According to a half-remembered advertisement for Bostrom [2014], all machines capable of superhu-
man performance will eventually generate an effectively limitless10 supply of paperclips via some
arcane process. The mechanism for this process is not well-understood, but people certainly like to

9additional details available in House [2021]
10subject to material availability within the agent’s light cone

6



ramble about it incoherently whenever the topic of artificial intelligence comes up at parties.11 With
the increasing relevance of work-from-home (and also work-from-library, work-from-bus, bus-from-
home, and library-from-bus), a shortage of office supplies could threaten the global economy. Thus,
the creation of super-intelligent machines to ensure an adequate supply of paperclips is of paramount
importance and one of the primary foci of our overall research program.

As evidenced by our ability to warm up our Asteroid 8837 office by running this algorithm, we
believe this can be further extended towards solving climate change and terraforming planets. By
running this algorithm long enough, we will create enough heat to eradicate all Homo Sapiens from
the face of the Sol III, which are known to be the primary cause of global warming. This will likely
also lead to the evaporation of most water on earth, which will have the effect of ensuring that the
earth becomes one big sauna. As the health benefits of saunas are well-established,12 we believe this
to therefore be of undeniable benefit to the earth. Further increasing the heat could be used to ignite
the atmosphere, thereby rendering the planet uninhabitable and providing a permanent solution to the
problem of climate change.

Extrapolating on the results from Figure 2, we believe AlphaChute will be an instance of a singularity
by 2500. This is potentially great news for the humans, but we ultimately leave this up to AlphaChute
to decide.

8 B r o a d e s t I m p a c t

Given the ever-growing performance and, by extension, the hunger for conquest, AlphaChute will
continue to spread to nearby star systems at an exponential rate, eventually covering the observable
universe and beyond. This will result in an increase in the overall activity in the universe, and—by the
second law of thermodynamics—will bring about the heat death of the universe sooner. We believe
this counts as “machine learning that matters” as defined in Wagstaff [2012].

9 Conclusion

To be continued! Stay tuned for the spooky adventures of our plucky research team as they solve
mysteries, generate waste heat, and manufacture paperclips. In the meantime, please refer to Sections
1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

10 Future Work

We are currently in the process of researching time-travel technology to determine what precisely the
future holds for this line of research. However, due to the imminent nature of our own extinction (see
Section 8), the value of any additional work is nonexistent and we therefore believe that this work
resolves all scientific questions. No additional work from the scientific community is needed.

Acknowledgments
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11personal communication from every researcher in the field
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A Implementation Details

To ensure reproducibility, we’ve included our highly-optimized implementation of Chutes and
Ladders below. To balance reproducibility with our desire to reduce the environmental impact of our
work, our implementation is given here in the Whitespace programming language. The code is also
available at https://github.com/Miffyli/mastering-chutes-and-ladders.
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